Learning Temporal Action Models via Constraint Programming

Antonio Garrido and Sergio Jiménez

Abstract. We present a solver-independent Constraint Programming (CP) formulation for learning action models in temporal planning scenarios beyond PDDL2.1. Inspired by the CP approach for temporal planning, our formulation bases on a temporal plan trace and represents observations (as time-stamped states), actions, causal-link relationships, condition threats and effect interferences. This formulation is very expressive and supports a wide range of input knowledge. It also evidences the connection between the tasks of: i) action model learning, ii) plan validation, and iii) plan synthesis. Our experiments evaluate the quality of the learned models under different learning scenarios and in different planning domains.

1 INTRODUCTION

Temporal planning relaxes the assumption of instantaneous actions of classical planning [10]. Actions in temporal planning are durative, as they have a duration, and their conditions/effects may hold/happen at different times [7]. This means that durative actions can overlap in different ways [4]. Therefore, valid solutions for temporal planning instances must specify the precise time-stamp when durative actions start and end [15].

Despite the potential of state-of-the-art planners, their application to real-world problems is still somewhat limited mainly because of the difficulty of specifying correct and complete planning models [17]. The more expressive the planning model, the more evident becomes this knowledge acquisition bottleneck, which jeopardizes the usability of planning technology. There are, however, growing efforts in the planning community for the machine learning of action models from sequential plans: since pioneering learning systems like ARMS [22], we have seen systems able to learn action models with quantifiers [2], we have seen systems able to learn action models with quantifiers [2], from noisy actions or states [20, 24], from null state information [3], or from incomplete domain models [25, 27]. These systems use planning, SAT and genetic algorithm techniques, but they do not exploit constraint programming paradigms nor address the complex temporal planning aspects.

Most of the previous approaches are purely inductive and require large input datasets, e.g. hundreds of plan samples or observations, to compute statistically significant models. These approaches could learn a little from each sample, but not a complete valid model for a particular sample. We follow a different approach and address the learning setting where one (or more) model is learned from a single sample, i.e. one-shot learning. If hundreds of samples are available we will learn many models and return the most learned model, that is, the most repeated one.

As far as we know, this paper proposes the first approach for learning temporal action models. On the one hand, while learning action models for classical planning means computing the actions conditions and effects that are consistent with the input observations, learning temporal action models requires additionally: i) identifying the time-stamps (temporal annotations) of conditions and effects and, when necessary, ii) estimate the actions duration. This contributes with an appealing way to learn from plan traces with overlapping actions in multi-agent environments [8]. On the other hand, our approach bases on the CP formulation of [9], which is used for planning and/or scheduling a whole plan. We keep the philosophy of using CP but, contrarily to [9], we address the inverse task now: learning the temporal action model given a plan trace. We also contribute with a solver-independent formulation that integrates the learning of temporal planning action models with their synthesis and validation.

2 BACKGROUND

2.1 Temporal planning

We assume that states are factored into a set F of Boolean variables. A state s is a time-stamped assignment of values to all the variables in F. A temporal planning problem is a tuple $P = \langle F, I, G, A \rangle$ where the initial state I is a fully observed state (i.e. a total assignment of the state variables $I = |F|$) time-stamped with $t = 0$; $G \subseteq F$ is a conjunction of goal conditions over the variables in F that defines the set of goal states; and A represents the set of durative actions. A durative action has a duration and conditions/effects on F at different times [9, 21]. To compactly represent temporal planning problems, we assume that the state variables in F are instantiations of a given set of predicates Ψ (like in the PDDL language [23]) and that durative actions in A are fully grounded from operators.

PDDL2.1 is the language for the temporal track of the International Planning Competition (IPC) [7, 12]. A PDDL2.1 durative action $a \in A$ is defined with the following elements:

1. $\text{dur}(a)$, a positive value indicating the duration of the action.
2. $\text{cond}_s(a), \text{cond}_d(a), \text{cond}_e(a)$ representing the three types of action conditions. Unlike the preconditions of classical actions, action conditions in PDDL2.1 must hold: before a is executed (at start), over the duration of a (invariant/over all) or when a finishes (at end), respectively.
3. $\text{eff}_s(a)$ and $\text{eff}_e(a)$ represent the two types of action effects. In PDDL2.1, effects can happen at start or at end of action a respectively, and can be either positive or negative.

Figure 1 shows an example of two PDDL2.1 durative actions from the driverlog domain of IPC. board-truck defines a fixed dura-
tion of two time units whereas the duration of drive-truck depends on the driving time associated to the two given locations.

\{(drivative-action board-truck
 |parameters {?d - driver ?t - truck ?l - location}
 |duration (= \$duration 2)
 |condition (and (at start (?d ?l))
 (at start (?t ?l))
 (not (at ?t ?l))
 (not (empty ?t)))
 |effect (and (at start (not (?d ?l)))
 (at start (not (?t ?l)))
 (empty ?t)
 (link ?l ?l))
\}

\{(drivative-action drive-truck
 |parameters {?t - truck ?l - location}
 |duration (= \$duration (driving-time ?l1 ?l2))
 |condition (and (at start (?t ?l1))
 (at start (?t ?l2))
 (link ?l1 ?l2))
 (over all (driving ?t)))
 |effect (and (at start (not (?t ?l1)))
 (at start (not (?t ?l2)))
 (at end (driving ?t))))\}

Figure 1. Two PDDL2.1 dervative actions of the IPC-driverlog domain.

PDDL2.2 is an extension of PDDL2.1 that includes the notion of Timed Initial Literal (TIL) [13], denoted as til(p, t), and representing that variable p ∈ F becomes true at a certain time t > 0, independently of the actions in the plan [5]. TILs are useful to model exogenous events; for instance, in a logistics scenario, the 8h-20h time window when a warehouse is open can be modeled with these two timed initial literals: til(open Warehouse, 8) and til(open Warehouse, 20).

A temporal plan is a set π = {\{(a1, t1), (a2, t2) ... (an, tn)\}}, where each pair (ai, ti) contains a dervative action ai and the start time ti = start(ai). The execution of π, starting from a given initial state I, induces a state sequence formed by the union of all states \{s0, s0 + dura(ai)\}, where there exists an initial state s0 = I, and a state s_end that is the last state induced by the execution of π. A solution to P is a plan π such that its execution, starting from s0, is valid (i.e. it holds all the involved action conditions) and eventually satisfies G ⊆ s_end.

2.2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a tuple \(X, D, C\), where X is a set of finite-domain variables, D represents the domain for each of these variables and C is a set of constraints among the variables in X that bound their possible values in D.

A solution to a CSP is an assignment of values to all variables in X that is consistent with C. If we do not define a metric over X, many solutions, i.e. different variable assignments that are consistent with the input constraints, are possible and equally valid.

3 LEARNING A TEMPORAL ACTION MODEL

We formalize the task for learning a temporal action model as a tuple \(\mathcal{L} = \{F, I, G, A, O, C\}\) where:

- \(\{F, I, G, A\}\) is a temporal planning problem such that actions in A are incomplete. By incomplete we mean that the exact conditions+effects, their temporal annotation (at start, over all or at end), and the duration of actions are unknown. The operator, name, and instantiated parameters (i.e. constants) of actions are known. The alphabet of a ∈ A (denoted α(a)) is defined as the set of all predicates p ∈ F that appear in the set of PDDL interpretations over the instantiated parameters of a. For instance in the driverlog domain, \(\alpha(\text{board-truck}(\text{driver1}, \text{truck1}, \text{loc1})) = \{\{\text{at driver1 loc1}, \{\text{at truck1 loc1}, \{\text{empty truck1}, \{\text{driving driver1 truck1}, \{\text{path loc1 loc1}, \{\text{link loc1 loc1}}\}\}\}\}\}\)

\[\text{size of } 6.\text{ On the other hand, we formally define candidates(a) as the two-set tuple }\{\{p_i\}, \{p_i + \neg p_i\}\}\text{, where }p_i \in \alpha(a).\text{ The first set }\{p_i\}\text{ denotes all candidates that can be conditions of a, whereas the second set }\{p_i + \neg p_i\}\text{ denotes all candidates that can be effects of a. Without loss of generality, we learn positive conditions and positive-negative effects. Intuitively, candidates(a) contains all the potential predicates that action a (or the corresponding operator) could learn; its size depends on the size of }\alpha(a), \text{ e.g.}\text{ candidates(board-truck(\text{?d, ?t, ?l}))} = 6 \times 3 = 18, \text{ for any } \text{?d, ?t and ?l.}\]

- \(O\) is the set of observations over a plan trace. It contains a full observation of I (time-stamped with t = 0) and a final state observation, which equals G (time-stamped with t_end, the makespan of the observed plan). Although I represents a full state observation, the final observation can represent a full or partial state: in plan synthesis and plan validation it is the partial goal state, and in learning it is the partial or full state to be explained by the learned model. O also contains the observations over the start and/or end times of actions and, optionally, other time-stamped observations of traversed intermediate partial states. Figure 2 shows an example of O from the driverlog domain.

- \(C\) is an optional set of constraints that captures domain-specific expert knowledge. In this work these constraints are:

 - Mutually-exclusive (mutex) constraints that allow us to: i) automatically deduce new observations, and ii) prune action models inconsistent with these constraints. For instance, we can provide input knowledge to avoid drivers to be in two different locations at the same time. Hence, if we learn the driver is in one location we can automatically deduce an observation (she is no longer in the other locations. Figure 3 shows an example of six mutex constraints for the driverlog domain.

- Constraints over candidates(a) to represent partially specified action models [27]. For instance, we may know in advance that path and link are unnecessary for board-truck while path is unnecessary for drive-truck. These constraints reduce the size of candidates(a), thus improving the learning.

A solution to a learning task \(\mathcal{L}\) is a fully specified model of dervative actions A such that the conditions+effects, their temporal annotations and the duration of any action in A are: i) completely specified, and ii) consistent with \(\mathcal{L} = \{F, I, G, A, O, C\}\).

By consistent we mean that there exists a valid plan that exclusively contains actions in A, and whose execution, starting in I, produces all the observations in O at the associated time-stamps, while it satisfies all constraints in C, and reaches a final state that satisfies G.

4 FORMULATING THE LEARNING TASK AS A CSP

Given a learning task \(\mathcal{L}\) as defined in Section 3, we automatically create a solver-independent CSP whose solution induces an action model that solves \(\mathcal{L}\).

\(\text{This work supports partial observations under the hypothesis that not all variables must be observed at any time. Observations are noiseless, which means that observed values are actual values with no uncertainty.}\)
porter. X8 models the time-stamp when effect happens. The values of X1, X2 and X3 can either be observed in O or derived from the expression end(a) = start(a) + dur(a). We model time in \mathbb{Z}^+ and bound all maximum times to the plan makespan (t_{end} if observed in O). If t_{end} is not observed, we consider a large enough domain for time. Boolean variables X4/X5 model whether p is actually a condition/effect of a. X6.1 and X6.2 define the interval throughout condition p must hold for the application of action a (provided is cond(p,a)=true). X7 models a causal link, representing that action b supports p, which is required by a. If p is not a condition of a (is cond(p,a)=false) then sup(p,a)=0, representing an empty supporter. X8 models the time-stamp when effect p happens in a (provided is eff(p,a)=true).

- init, which represents the initial state I (start(init) = 0 and dur(init) = 0). It has no conditions so it has no associated variables is cond, req start, req end and sup. It has as many is eff(p,init)=true and time(p,init) = 0 as p in I.
- goal, which represents the goals G (start(goal) = t_{end} and dur(goal) = 0). It has no effects so it has no is eff and time variables. It has as many is cond(p,goal)=true, sup(p,goal) ≠ ∅ and req start(p,goal) = req end(p,goal) = t_{end} as p in G.

This formulation is powerful enough to model TIIs and observations. A til(p,t) is analogous to init, and it is modeled as a dummy action that starts at time t and has instantaneous duration (start(til(p,t)) = t and dur(til(p,t)) = 0) with no conditions and the single effect p that happens at time t (is eff(p,til(p,t))=true and time(p,til(p,t)) = t). An observation obs(p,t) is analogous to goal, and it is modeled as a dummy action that starts at time t and has instantaneous duration (start(obs(p,t)) = t and dur(obs(p,t)) = 0) but with only one condition p, which is the value observed for p (is cond(p,obs(p,t))=true, sup(p,obs(p,t)) ≠ ∅ and req start(p,obs(p,t)) = req end(p,obs(p,t)) = t), and no effects at all. Observations can also refer to start(a), end(a) or dur(a).

4.2 The constraints

Table 2 shows the constraints among the variables of Table 1. C1 and C2 model the end of any action, which must happen no later than goal. C3 models valid supporters. C4 forces to have a well-defined [req start, req end] interval, throughout condition p is required in a. C5 models that the time when b supports p must be before a requires it because of the causal link (b, p, a). Given a causal link (b, p, a), C6 avoids the threat of action c deleting p (threats are solved via promotion or demotion [12]). C7 prevents action a from being a supporter of p when is eff(p,a)=false. C8 models the fact that when the same action requires and deletes p the effect cannot happen before the condition. Note the ≥ inequality here: if one condition and one effect of the same action happen at the same time, the underlying semantics in planning considers the condition is checked instantly before the effect [7]. C9 prevents two actions from having contradictory effects at the same time. C10 only applies to non-dummy actions and forces them to have at least one condition and one effect (as usual, true is counted as 1 and false as 0).

Some conditions of Table 2 are redundant. For instance in C5 and C6, sup(p,a) = 0 means obligatorily is eff(p, b) = true. We include them here to define an homogeneous formulation but they are not included in our implementation. For simplicity, the value of some unnecessary variables is not bounded in the table. For instance, if is cond(p,a)=false, the values for req start(p,a) and req end(p,a) become useless.

Specific constraints for PDDL2.1

Our formulation is more expressive than PDDL2.1. For instance, it allows conditions/effects to be at any time: constraint req start(p,a) = start(a) − 2 and req end(p,a) = start(a) + 2 easily allows condition p to hold in start(a) ± 2.

Making our formulation PDDL2.1-compliant is straightforward by adding the constraints of Table 3 for all non-dummy actions. C11...
limits the conditions to be only at start, over all or at end. C12 limits the effects to happen at start or at end. In PDDL2.1, all actions \(a_j \) grounded from the same operator share the same structure of conditions/effects. C13 guarantees this for the conditions and C14 for the effects. C15 makes the duration of all occurrences, which can happen many times and are modeled separately, of the same type. This is the problem in PDDL2.1. C16 forces all actions to have at least one of its \(n \)-effects at end, since actions with only \(n \)-effects turn false in the model.

Table 3. Constraints to learn PDDL2.1-compliant action models.

<table>
<thead>
<tr>
<th>ID</th>
<th>Constraint</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mutual constraints

As seen in Section 3, mutex constraints in C can be exploited as input knowledge to automatically deduce new observations in L. If two predicates \(p_i, p_j \) are mutex they cannot hold simultaneously, and the learned action model needs to satisfy this. Consequently, if \(p_i \) holds, we can infer \(\neg p_j \) (since \(\neg p_j \) was not actually observed). This reasoning is specially relevant for correctly learning negative effects when there is a lack of input observations. After all, what is the necessity to learn negative effects if they are not observed or directly observed? Mutual reasoning helps us to fill this void by automatically inferring the observation of negated variables, which forces later to satisfy the causal links of negated variables, and improves the learned models (as we will see in Section 6). Note however that, given a \(\langle p_i, p_j \rangle \)-mutex in a durative actions setting, \(\neg p_i \) does not necessarily imply \(p_j \). See, for example, the effects (not \(a \) (at \(t \)) and (at \(t \)) of action drive-truck in Figure 1, which respectively happen at different times (at start vs. at end). As defined in Figure 3, these two predicates are mutex as a truck cannot be in two locations simultaneously; although it is valid for a truck to be, for some time (from start to end), at no location. Note this situation does not happen in classical planning, where actions have instantaneous effects and if \(p_i, p_j \) are mutex, then \(p_i \) implies \(\neg p_j \) and vice versa.

Dynamic observations are necessary to exploit mutex constraints at any intermediate state, even if such state was not observed at all. Reasoning on a mutex \(\langle p_i, p_j \rangle \) means that, immediately after \(a \) asserts \(p_i \), we need to ensure the observation \(\neg p_j \). Technically, when \(is_eff(p_i, a) \) takes the value true, then the observation \(\neg p_j \) is not needed to be dynamically added. The time of the observation cannot be just \(time(p_i, a) \), as we first need to assert \(p_i \) and one \(e \) later observe \(\neg p_j \). Adding the variables and constraints for this new observation during the CSP search is trivial for Dynamic CSPs (DCSPs) [19]. Otherwise, we need to statically define a new type of observation \(obs(p_i, a, \neg p_j) \), where \(a \) supports \(p_i \) which is mutex with \(p_j \) and, consequently, we will need to observe \(\neg p_j \). The difference w.r.t. an original obs is twofold: i) the observation time is now initially unknown, and ii) the observation will be activated or not according to the following constraint:

\[
\text{if } (is_eff(p_i, a) = \text{true}) \text{ then } (\text{start}(obs(p_i, a, \neg p_j)) = \text{time}(p_i, a) + e) \text{ AND } (\text{sup} \text{cond} \text{obs}(p_i, a, \neg p_j))\text{true} \\
\text{else } \text{cond} \text{obs}(p_i, a, \neg p_j)\text{false}
\]

Reasoning on mutex depends on optional input knowledge in C and increases notably the size of our formulation, specially in non-DCSPs, but it is automated together with the creation of all the constraints of Table 2.

4.3 The heuristics

In a pure satisfaction problem, all possible solutions are equally valid. We have investigated the use of several metrics (e.g. reducing the number of causal links or side effects), and although they allow the user to specify preferences over the space of possible solutions, we have not found a metric that leads to learn the best model. Therefore, we have focused on simple heuristics that show effective in the tradeoff quality of learning vs. performance, and guide the search in a univocal way. Hence, we propose the following variable-value ordering heuristics:

1. X4 (is_cond). True first, which learns the most restrictive model of conditions.
2. X5 (is_eff). False first, which learns a model with the min number of causal links, which reduces the number of side effects.
3. X8 (time). Lower values first for negative effects, while upper values first for positive effects. This learns delete and positive effects as eff_ and eff_., respectively.
4. X6 (req_start and req_end). Lower values first for req_start, while upper values first for req_end. This gives priority to cond_ trying to keep conditions as long as possible in the model learned.
5. X7 (sup). Lower values first to learn supporters that start earlier in the plan trace.
6. X3 (dur). Lower values first, which learns a model with the shortest actions.

5 A UNIFIED FORMULATION FOR PLANNING, VALIDATION AND LEARNING

Our formulation has been primarily designed to solve the task of model learning, but it is strongly connected to the tasks of plan synthesis and plan validation. This connection lies on the fact that we can leverage the input knowledge on the planning domain over a wide range of (un)known levels. This section provides an integrative view for these three tasks in a temporal planning setting, although this connection also applies to a classical planning model4, that is, the vanilla model of planning where actions are instantaneous and a solution is a totally ordered sequence of actions [10].

Plan synthesis Given a learning task $\mathcal{L} = \langle F, I, G, A?, O, C \rangle$, each action in $A?$ is completely specified. This is equivalent to know in advance the values for variables $\{X3,X4,X5\}$ of Table 1 and the OR-constraint that holds in $\{C13,C14\}$ of Table 3, while other variables/constraints remain open/unknown. The observations in O are incomplete as no information on the start/end time of actions is given, i.e. the values of $\{X1,X2\}$ are to be determined. This provides the complete model of actions, with the duration, conditions and effects (and their temporal annotation), as defined in the PDDL2.1 domain. In this case, solving the resulting CSP is equivalent to solve the temporal planning problem $P = \langle F, I, G, A? \rangle$. The solution is a plan that reaches G from state I under the complete action model defined in $A!$. Also, the observations over a plan trace in O can be understood as a sequence of time-stamped landmarks [14] for P that are given as input (the predicates of the sets in O must be achieved by any plan that solves P and at the time-stamps given by O).

Moreover, it is important to note that our formulation allows us to synthesize a plan despite some of the variables that represent the conditions, effects and duration of an action are unknown. This subsumes the capabilities of off-the-shelf planners that require the complete model of actions for planning.

Plan validation Given a learning task $\mathcal{L} = \langle F, I, G, A?, O, C \rangle$, each action in $A?$ is completely specified like in plan synthesis. The observations over a plan trace in O are specified like in plan synthesis and, additionally, the observations on the start/end times of actions are also complete, which means that the values of $\{X1,X2\}$ are now known. This provides both the complete model of actions, as defined in the planning domain, and the complete plan trace for all actions (the temporal plan $\pi = \{a_1,t_{a_1},\ldots,a_n,t_{a_n}\}$ is consequently known). This allows us to know in advance the values of all variables $\{X1,X2,\ldots,X8\}$. In this case, solving the resulting CSP is equivalent to check whether this full assignment of the CSP is consistent, which means validating the plan π. In the event of inconsistency, π will need to be executed from I until a condition is unsatisfied to identify the source of the plan failure.

Moreover, our formulation allows us to validate plans despite some of the variables that represent the conditions, effects and duration of an action are unknown, and despite some (a,t_a) pairs in the input plan trace are incomplete. In such scenarios, the plan validation ability of our formulation is beyond the functionality of VAL (the standard plan validation tool [15]) since it can address plan validation of partial, or even empty, action models and with partially observed plan traces. On the contrary, VAL requires both a full plan and a full action model for plan validation. Note, however, that finding a solution for our formulation means it is verified at least once, rather than no matter what will be filled in there, like VAL checks.

Action model learning Given a learning task $\mathcal{L} = \langle F, I, G, A?, O, C \rangle$, we can learn the action model from scratch by using our formulation, which is the most expensive and less scalable task; it requires finding a solution to the resulting CSP that builds the full action model. But we can also learn from several partially specified action models, thus simplifying the learning task. Solving the resulting CSP in those cases is equivalent to fill the gaps of a partial action model where, optionally:

- Some conditions and/or effects are known (some $\{X4,X5\}$ have initial values); e.g. we know that an action requires for sure certain conditions and we are mainly interested in learning their temporal annotations (at start, over all or at end).
- The temporal annotation of some conditions and/or effects is known (we know some OR-constraints that hold in $\{C13,C14\}$); e.g. we know that some effects always happen at end of the action. Some start/end times or durations are known (some $\{X1,X2,X3\}$ have initial values); e.g. the duration of some actions is known.

In addition to the three previous options that simplify and improve the performance of the learning task, there are two additional options that can help us to improve the quality of the learned models where:

- Some candidates $\alpha(a)$ are filtered in A. If the alphabet $\alpha(a)$ is big, the size of candidates $\alpha(a)$ can be huge. This not only makes the learning task more expensive but also facilitates a bad learning of predicates. A static predicate represents information that is always true and never changes. For instance, as shown in Section 3, $\{(\text{path loc1 loc2}), (\text{link loc1 loc2})\}$ represent the fact that there is a path/link between loc1 and loc2. They can be necessary in the conditions of some actions (e.g. drive-truck), but never in the effects so they should never be learned as effects. Therefore, as a preprocessing stage to improve the input knowledge of $A!$, we can filter static predicates from the effects-set of candidates $\alpha(a)$ and make it smaller.
- The final state observation in G contains a goal state, i.e. the total assignment of the last state variables, rather than a partial assignment. Similarly to the mutex reasoning, having a full state forces to satisfy the causal links of all state variables, which reduces performance but improves the quality of the learning. Intuitively, since G is more informative now, the learning is better.

Finally, it is important to note that our learning task learns one model from one plan trace. A more general learning task could learn one model from dozens of plan traces but, though very appealing, this has serious problems of scalability (the number of variables+constraints grows alarmly). To learn from many traces, we can apply the learning task to each individual trace and then return the most learned model, i.e. the most repeated one. The benefit here is twofold: i) the overall learning time is shorter; and ii) the learned model explains the 100% of, at least, one plan trace. Although this seems too obvious, it is the main limitation of the learning approaches that learn statistically models from many samples.
6 EVALUATION

Our formulation has been implemented in Choco (http://www.choco-solver.org), an open-source Java library for CP that provides an object-oriented API. Choco uses a static model of variables and constraints, i.e. it is not a DCSP. We have used this implementation to evaluate the quality of the learned models, from both a syntactic and semantic perspective. We have used four IPC PDDL2.1 domains, thus needing their specific constraints of Section 4.2, and solved a collection of instances by using five planners (LPG-Quality [11], LPG-Speed [11], TP [16], TFD [6] and TFLAP [18]). We have randomly chosen 50 plans (up to 20-30 actions) per domain, which are automatically compiled into 50 learning tasks that configure our experiments dataset. Then we solved each learning task, in satisfaction mode, and got the first five action models found. We also calculate the most learned models. The solving time was limited to 300s on an Intel i5-6400 @ 2.70GHz with 8GB of RAM.

There are several elements in a learning task \(\mathcal{L} \) that can be considered, as seen in Sections 4.2 and 5. First, we can enable mutex reasoning or not (named mutexON or mutexOFF). Second, the static effect predicates can be filtered in candidates of all operators as a preprocessing stage (denoted as +F) or not. Third, the final state in \(G \) means observing Only partial Goals (named OG) or observing the Full goal State (named FS). This way, we run six learning scenarios: OG, OG+F and FS+F, each with mutexON and mutexOFF (we discard FS with no Filtering because of the size of \(G \)).

6.1 Experimental setup

Table 4 summarizes our experiments. #O is the number of Operators and #PTL the number of Predicates To Learn. #candidates is the size of candidates for all the operators when no Filtering (not +F) and when such Filtering (+F) is done. The number of #tasks solved is given for the six learning scenarios used in this section: OG, OG+F, FS+F, and these in both mutexOFF (first line) and mutexON (second line) versions. For instance, in zenotravel we need to learn 5 operators and 28 predicates. In absence of filtering, the number of candidates is 105, which is reduced to 71 when +F. This reduction depends on the domain definition, and ranges from zero (parking) to significant values (floortile). As can be seen, not all the tasks were solved in 300s. This depends on the complexity of the domain, the #PTL and, specially, the #candidates. Dealing with a scenario task of OG is easier because there are fewer predicates in \(G \) (though this is less informative) than in the FS version. Furthermore, learning with mutexOFF is usually easier than learning with mutexON because no deduced observations are necessary, but less informative.

<table>
<thead>
<tr>
<th></th>
<th>#O</th>
<th>#PTL</th>
<th>#candidates not +F</th>
<th>#candidates +F</th>
<th>OG solved</th>
<th>OG+F solved</th>
<th>FS+F solved</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenotravel</td>
<td>5</td>
<td>28</td>
<td>105</td>
<td>71</td>
<td>50 (0.24)</td>
<td>50 (0.26)</td>
<td>50 (0.26)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>28</td>
<td>144</td>
<td>96</td>
<td>50 (0.21)</td>
<td>50 (0.21)</td>
<td>50 (0.21)</td>
</tr>
<tr>
<td>driverlog</td>
<td>7</td>
<td>44</td>
<td>417</td>
<td>217</td>
<td>50 (0.23)</td>
<td>50 (0.23)</td>
<td>50 (0.23)</td>
</tr>
<tr>
<td>floortile</td>
<td>4</td>
<td>32</td>
<td>131</td>
<td>131</td>
<td>50 (0.21)</td>
<td>50 (0.21)</td>
<td>50 (0.21)</td>
</tr>
<tr>
<td>parking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 (0.24)</td>
<td>50 (0.26)</td>
<td>50 (0.26)</td>
</tr>
</tbody>
</table>

In zenotravel the 50 tasks were solved for all six scenarios. Since five action models are returned per solved task, up to 250 potential different models are to be learned per scenario in zenotravel. However, this is not the case and this number is usually lower, which is a good indication that models tend to converge more easily; i.e. many different tasks learn the same model. This indication of convergence is depicted in the table between brackets and in bold text, as the relation between the number of different learned models and the potential number of models (clearly lower values are better). In zenotravel OG+mutexOFF only 67 different models were found, which gives a value of 67/250=0.27. These values are good in zenotravel (particularly in OG+F and FS+F) and driverlog, and worse in parking and floortile, where OG+F+mutexON shows the worst result (0.97).

6.2 Syntactic evaluation. Precision and recall

From a pure syntactic perspective, learning can be considered as an automated design task to create a new model that is similar to a reference (or ground truth) model. Hence, the aim is to assess the precision and recall of the learned model, two common metrics in learning [1, 26, 28], that give us an intuitive idea on the soundness and completeness, respectively, of the new model.

Given two models, \(\text{precision} = \frac{p^\text{c}}{p^\text{p}} \) where \(p^\text{c} \) counts the number of predicates (i.e. conditions+effects) that appear correctly and are temporally annotated equally in both models, and \(p^\text{p} \) counts the number of predicates that appear in the learned model but should not appear. On the other hand, \(\text{recall} = \frac{p^\text{p}}{p^\text{c}} \), where \(p^\text{p} \) counts the number of predicates that should appear in the learned model but are not present. Table 5 depicts these metrics for our six learning scenarios as average scores for all the learned models. We show the scores for the Start, Invariant and End Conditions (SC, IC and EC respectively), Start and End Effects (SE and EE respectively), and All Conditions and All Effects (AC and AE respectively) for the six learning scenarios (mutexOFF and mutexON are shown in the first and second line, respectively).

The use of mutexON has a positive impact in the precision of AC, but not in AE, and improves the scores of the recall in both AC and AE. Note the recall of SE, which is 0 for mutexOFF in OG and OG+F, and significantly higher when mutexON. With mutexOFF there is no need to learn negative effects, typically modeled as start effects, and the learned models are relaxed models where negative effects are not included. FS generally improves the precision of AC and AE, and also improves the recall of AE because the negative effects present in the full final state cannot be relaxed so need to be learned. Consequently, mutexON or FS help to improve the completeness of the learned effects. The Filtering scenarios (+F) improves the precision of AC and AE, specially where there exists irrelevant static information (e.g. floortile). Due to lack of space in the table, we do not show all the precision and recall scores for the most learned model. But we do show its precision and recall of AC and AE (between brackets and in bold text). Although the most learned model generally produces scores above the average, this cannot be guaranteed. Actually, we have detected that sometimes there are several most learned models, i.e. different models that are learned the same number of times. But we have not found a safe tie-breaking mechanism to decide the model that leads to the best scores.

6.3 Semantic evaluation. Validation

There is not a unique reference model when learning temporal models; e.g. at start and over all can be interchangeable in some domains, but they are syntactically different. Consequently, a pure syntax-based measure might return misleading results. From this standpoint,
the quality of the learned model can be assessed by analyzing the success ratio of the learned model against unseen samples of a test dataset, analogously to a classification task.

Formally, \(\text{success ratio} = \frac{\text{samples}^+}{\text{dataset}} \), where \(\text{samples}^+ \) counts the number of samples the learned model explains on a test dataset. A ratio of 1.0 implies learning a model that explains the full dataset: a solution is found which is consistent with the constraints of the learned model together with the test samples ones.

Table 5 shows the average success ratios, where each learned model is validated against the remaining tasks of the same domain. For instance, in zenotravel there are 50 tasks solved per learning scenario (see Table 4). The five models of each task should be validated against the 49 remaining tasks, which means a huge evaluation task but also the planning and validation tasks.

As a summary, the results show that reasoning on mutex (mutexON) is more expensive than mutexOFF, but it improves the quality of the learned models. Filtering static predicates reduces the number of decisions to take, simplifies the task and improves the learning. Observing only partial goal states (OG) is easier than observing full goal states (FS), but the latter provides a more complete learning.

We have proposed variable+value ordering heuristics that prove effective in our experiments, which test different learning scenarios. As a summary, the results show that reasoning on mutex (mutexON) is more expensive than mutexOFF, but it improves the quality of the learned models.

<table>
<thead>
<tr>
<th>OG</th>
<th>Precision: mutexOFF: first line, mutexON: second line</th>
<th>Recall: mutexOFF: first line, mutexON: second line</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenotravel</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>driverlog</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>floortile</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>parking</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OG+F</th>
<th>Precision: mutexOFF: first line, mutexON: second line</th>
<th>Recall: mutexOFF: first line, mutexON: second line</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenotravel</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>driverlog</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>floortile</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>parking</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FS+F</th>
<th>Precision: mutexOFF: first line, mutexON: second line</th>
<th>Recall: mutexOFF: first line, mutexON: second line</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenotravel</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>driverlog</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>floortile</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
<tr>
<td>parking</td>
<td>0.80 0.74 0.94 0.81 0.93 0.73 0.90 0.85 0.74 0.90 0.85 0.74</td>
<td>0.70 0.63 0.87 0.70 0.85 0.70 0.87 0.70 0.85 0.70 0.87 0.70</td>
</tr>
</tbody>
</table>

Table 6. Success ratio of the models learned against the test dataset.

<table>
<thead>
<tr>
<th>OG</th>
<th>OG+F</th>
<th>FS+F</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenotravel</td>
<td>0.70 (1.0)</td>
<td>0.80 (1.0)</td>
</tr>
<tr>
<td>driverlog</td>
<td>0.70 (1.0)</td>
<td>0.80 (1.0)</td>
</tr>
<tr>
<td>floortile</td>
<td>0.70 (1.0)</td>
<td>0.80 (1.0)</td>
</tr>
<tr>
<td>parking</td>
<td>0.70 (1.0)</td>
<td>0.80 (1.0)</td>
</tr>
</tbody>
</table>

All in all, we have found out the semantic evaluation is a bit convoluted. One subtle syntactic difference might not affect the semantic evaluation (e.g. interchangeable conditions). On the contrary, an effect that is not correctly learned involves a subtle penalization in the syntactic evaluation, but it affects negatively the semantic evaluation (that difference might not explain a huge number of samples, as usually happens in floortile). Therefore, we have detected that in some domains the success ratio can also return misleading results.

7 CONCLUSIONS

There is a growing interest for learning action models in AI planning due to its application to recognition of past behavior for prediction, decision taking, robotics motion capturing, etc. Learning is appealing because these scenarios include a huge number of tasks, sometimes difficult to be described formally, which require expert knowledge that is impractical in complex domains.

The general contribution of this paper is a solver-independent CP formulation to learn action models in temporal planning, which is more complex than in classical planning because actions can overlap in different ways. We have formulated all variables and constraints under a flexible schema that accommodates a high level of expressiveness, where all relations of Allen’s algebra for temporal reasoning are supported. What is more, we also support different levels of specification of the input knowledge. This knowledge, as a partially specified action model, can be adapted to address not only the learning task but also the planning and validation tasks.

We have proposed variable+value ordering heuristics that prove effective in our experiments, which test different learning scenarios. As a summary, the results show that reasoning on mutex (mutexON) is more expensive than mutexOFF, but it improves the quality of the learned models. Filtering static predicates reduces the number of decisions to take, simplifies the task and improves the learning. Observing only partial goal states (OG) is easier than observing full goal states (FS), but the latter provides a more complete learning. In general, mutexON or FS help to learn negative effects, which in other scenarios are relaxed and not learned. FS is useful when (negative)
effects do not change frequently throughout the plan trace, whereas mutexON is very useful to learn strong interactions between contradictory predicates (when one is true the other should be immediately and automatically asserted as false).

Our formulation can be solved by Satisfiability Modulo Theories, which is part of our current work. As for future work, we want to extend our formulation to learn from intermediate observations (we need to investigate how many and how frequent they must be) and to learn meta-models (as combinations of several learned models).

ACKNOWLEDGEMENTS

This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. S. Jiménez is partly supported by the RYC15/18009.

REFERENCES

