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Explanation-Based Learning of Action
Models

Diego Aineto, Sergio Jiménez, and Eva Onaindia

Abstract The paper presents a classical planning compilation for learning STRIPS

action models from partial observations of plan executions. The compilation is
flexible to different amounts and types of input knowledge, from learning samples
that comprise partially observed intermediate states of the plan execution to samples
in which only the initial and final states are observed. The compilation accepts
also partially specified action models and it can be used to validate whether an
observation of a plan execution follows a given STRIPS action model, even if the
given model or the given observation is incomplete.

Keywords Learning action models · Classical planning

1 Introduction

Action models in planning are not only required for plan synthesis [10] but also for
other tasks like plan/goal recognition [19, 20]. In both cases, automated planners
are required to reason about action models that correctly and completely capture
the possible world transitions [9]. Unfortunately building planning action models
is complex, even for planning experts, and this knowledge acquisition task is a
bottleneck that limits the potential of AI planning [14].

Machine Learning (ML) techniques have shown to be suitable to learn a wide
range of different kinds of models from examples [17]. The application of inductive
ML to learning STRIPS action models, the vanilla action model for planning [6], is
not straightforward though:

– The input to ML algorithms (the learning/training data) is usually a finite vector
that represents the value of some fixed object features. The input for learning
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planning action models is, however, the observation of plan executions, where
each plan has a possibly different length (plan length is not a priori bounded) and
refers to a different number of objects.

– The output of ML algorithms is usually a scalar value (an integer, in the case of
classification tasks, or a real value, in the case of regression tasks). The learning
of action models outputs a declarative definition of the preconditions and effects
of the modeled actions.

Learning STRIPS action models is a well-studied problem with sophisticated
algorithms such as ARMS [27], SLAF [2], or LOCM [4]. All of these learning
systems are capable of dealing with partial or null observability of the intermediate
states traversed along the plan execution but they also require a full specification of
the sequence of actions of the learning examples. Motivated by recent advances on
the synthesis of different kinds of generative models with classical planning [3, 22–
24], this paper describes a classical planning compilation approach for learning
STRIPS action models. The compilation approach is appealing by itself, because it
opens up the door to the bootstrapping of planning action models, but also because
it is flexible to different amounts and types of available input knowledge:

1. Learning examples can range from plans that comprise partially observed
intermediate states of the plan execution to samples in which no intermediate
state/action is observed, that is, only the initial and final states are observed.

2. Partially specified action models, expressing prior knowledge about the structure
of actions, can also be provided to the compilation. In the extreme, the com-
pilation can validate whether an observed plan execution is consistent with a
given STRIPS action model, even if the model is not fully specified or the input
observation is incomplete.

2 Background

In this section we formalize the classical planning model, for the observation model
to represent the execution of a classical plan and the model for the explanation of a
given observation.

2.1 Classical Planning with Conditional Effects

F is the set of fluents or state variables (propositional variables). A literal l is a
valuation of a fluent f ∈ F , i.e., either l = f or l = ¬f . L is a set of literals
that represents a partial assignment of values to fluents, and L(F ) is the set of all
literals sets on F , i.e., all partial assignments of values to fluents. A state s is a full
assignment of values to fluents. We explicitly include negative literals ¬f in states
and so |s| = |F | and the size of the state space is 2|F |.
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A planning frame is a tuple Φ = 〈F,A〉, where F is a set of fluents and A is
a set of actions. An action a ∈ A is defined with preconditions, pre(a) ∈ L(F ),
and effects eff(a) ∈ L(F ). The semantics of actions a ∈ A is specified with two
functions: ρ(s, a) denotes whether action a is applicable in a state s and θ(s, a)

denotes the successor state that results of applying action a in a state s. Therefore
ρ(s, a) holds iff pre(a) ⊆ s and the result of applying a in s is θ(s, a) = {s \
¬eff(a)) ∪ eff(a)}, with ¬eff(a) = {¬l : l ∈ eff(a)}.

A planning problem is defined as a tuple P = 〈F,A, I,G〉, where I is the initial
state in which all the fluents of F are assigned a value true/false and G is the goal
set. A plan π for P is an action sequence π = 〈a1, . . . , an〉, and |π | = n denotes
its plan length. The execution of π in the initial state I of P induces a trajectory
τ = 〈s0, a1, s1, . . . , an, sn〉 such that s0 = I and, for each 1 ≤ i ≤ n, it holds
ρ(si−1, ai) and si = θ(si−1, ai). A plan π solves P if G holds in the last state of
the induced trajectory τ ; i.e., G ⊆ sn. A solution plan is optimal iff its length is
minimal.

Now we define actions with conditional effects because they allow us to
compactly define our compilation. An action ac ∈ A with conditional effects is
defined as a set of preconditions pre(ac) ∈ L(F ) and a set of conditional effects
cond(ac). Each conditional effect C � E ∈ cond(ac) is composed of two sets of
literals: C ∈ L(F ), the condition, and E ∈ L(F ), the effect. An action ac ∈ A is
applicable in a state s if and only if pre(ac) ⊆ s, and the triggered effects resulting
from the action application are the effects whose conditions hold in s:

triggered(s, ac) =
⋃

C�E∈cond(ac),C⊆s

E.

The result of applying ac in state s follows the same definition of successor state,
θ(s, a), but applied to the conditional effects in triggered(s, ac).

2.2 The Observation Model

Given a planning problem P = 〈F,A, I,G〉, a plan π that solves P , and
the corresponding trajectory τ induced by the execution of π in I , τ =
〈s0, a1, s1, . . . , an, sn〉; there exist as many observations of τ as combinations of
observable actions and observable fluents of the states of τ . The observation model
of the trajectory τ comprises all possible combinations of observable elements of
τ . We will refer to the set of observations of τ as Obs(τ).

Formally, one observation in Obs(τ) is defined as O = 〈so
0 , so

1 . . . , so
m〉, so

0 = I ,
a sequence of possibly partially observable states, except for the initial state so

0
which is fully observable. A partially observable state is one in which |so

i | < |F |,
1 ≤ i ≤ m ≤ n; i.e., a state in which at least a fluent of F is not observable. It
may be also the case that |so

i | = 0 when an intermediate state is fully unobservable.
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The minimal observation needed by our model is O = 〈so
0 , so

1 〉, where s0
0 is the fully

observable initial state and so
1 is a partially observable final state.

The observation model can also include observed actions as fluents indicating
the applied action in a given state. This means that a sequence of observed actions
〈ao

1 , . . . , ao
l 〉 is a sub-sequence of π = 〈a1, . . . , an〉 such that ao

i ∈ so
i−1, 0 ≤ i ≤ l.

Consequently, the number of fluents that represent observed actions, l, can range
from 0 (in a fully unobservable action sequence) to |π | = n (in a fully observed
action sequence).

Given O ∈ Obs(τ), the number of observed states of O = 〈so
0 , so

1 . . . , so
m〉 ranges

from 2 (at least the initial and final states, as explained above) to |π |+1. The number
of fluents of the full observable state so

0 will be |F |, or |F | + 1 in case the fluent
of the applied action in s0 is also observed. Every observable intermediate state
will comprise a number of fluents between [1, |F | + 1], where a single fluent may
represent a sensing fluent of the state or the observation of the applied action.

This observation model can also distinguish between observable state variables,
whose value may be read from sensors, and hidden (or latent) state variables, that
cannot be observed. Given a subset of fluents Γ ⊆ F we say that O is a Γ -
observation of the execution of π on P iff for every observed state so

i , 1 ≤ i ≤ m,
so
i only contains fluents in Γ .

2.3 Explaining Observations with Classical Planning

In this section we will explore the relationship between a trajectory τ and an obser-
vation O. Particularly, we are interested in determining the necessary conditions for
O to belong to Obs(τ). When the membership O ∈ Obs(τ) is established, we say
that O is consistent with τ or that τ explains O.

For the sake of simplicity, and given that our observation model encodes the
observed applicable actions as fluents in the corresponding state, we will denote
a trajectory as τ = 〈s′

0, s
′
1, . . . , s

′
n〉, where s′

i comprises a fluent representing the
applicable action ai+1 in s′

i .
Given an observation O = 〈so

0 , so
1 . . . , so

m〉 and a trajectory τ = 〈s′
0, s

′
1, . . . , s

′
n〉,

where m ≤ n, so
0 = s′

0, and so
m ⊆ s′

n, it holds that O ∈ Obs(τ) iff τ embeds O; i.e.,
if there is a monotonic function f mapping the observation indices j = 1, 2, . . . , m

into the trajectory indices i = 1, 2, . . . , n such that so
j ⊆ s′

f (j). This definition is
a generalization of the one introduced in [19], which states the conditions under
which an action sequence satisfies an observation sequence. Since all the elements
(sets) of O are associated to an element (set) of τ , but not vice versa, the fluents of a
set of O are all included in the corresponding set of τ , we can say that τ is a superset
of O. All this means that transiting between two consecutive observed states in O
may require the execution of more than a single action (θ(so

i , 〈a1, . . . , ak〉) = so
i+1,

where k ≥ 1 is unknown but finite. In other words, the information of O does not
imply knowing the actual length of the trajectory τ .
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Given a planning frame Φ = 〈F,A〉 and an observation of a plan execution, O =
〈so

0 , so
1 . . . , so

m〉, we define PO, within the given planning frame, as the planning
problem that is built as follows: PO = 〈F,A, so

0 , so
m〉.

Definition 1 (Explanation) A plan π (or the trajectory τ ) explains O iff π is a
solution for PO and O ∈ Obs(τ).

There may exist more than one solution plan for PO, one or more of which will
be optimal solutions if their plan length is minimal. Additionally, other solutions
longer than the optimal plan can also be found.

Definition 2 (Best Explanation) A plan π (or the trajectory τ ) that solves PO is
the best explanation for O iff |π | = n and for every other τi s.t. O ∈ Obs(τi),
|πi | > n.

That is, in case that π is optimal, we say that π is the best explanation for the
input observation O.

The observation O can also be regarded as a sequence of ordered landmarks for
the planning problem PO [11] since all the fluents of the sets in O must be achieved
by any plan that solves PO and in the same order as defined in the observation O.

3 Explanation-Based Learning of Strips Action Models

The task of learning action models by explaining the observation of a plan execution
is defined as a tuple Λ = 〈M,O〉, where

– M is the initial empty model that contains only the header (i.e., the name and
parameters) of each action model to be learned.

– O = 〈so
0 , so

1 . . . , so
m〉 is a sequence of partially observed states, except for the

initial state so
0 which is fully observable.

A solution to a Λ = 〈M,O〉 learning task is a model M′ that is consistent
with the headers of M and that explains O. We say that a model M′ explains an
observation O iff there exists a solution plan for PO = 〈F,A, so

0 , so
m〉, where the

semantics of the set of actions A are given by M′, such that π explains O. The set
of fluents F ∈ PO is induced from so

0 ∈ O since it represents a full state.

3.1 The Space of Strips Action Models

We analyze here the solution space of the addressed learning task; in this case the
space of STRIPS action models.
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A STRIPS action model is defined as ξ = 〈name(ξ), pars(ξ), pre(ξ), add(ξ),

del(ξ)〉, where name(ξ) and parameters, pars(ξ), define the header of ξ ; and
pre(ξ), del(ξ), and add(ξ)) are sets of fluents that represent the preconditions,
negative effects, and positive effects, respectively, of the actions induced from the
action model ξ .

Let Ψ be the set of predicates that shape the fluents F (the initial state of an
observation is a full assignment of values to fluents, |so

0 | = |F |, and so
the predicates Ψ are extractable from the observed state so

0 ). The set of
propositions that can appear in pre(ξ), del(ξ), and add(ξ) of a given ξ ,
denoted as Iξ,Ψ , are FOL interpretations of Ψ over the parameters pars(ξ).
For instance, in a four-operator blocksworld [25], the Iξ,Ψ set contains
five elements for the pickup(v1) model, Ipickup,Ψ ={handempty,
holding(v1),clear(v1),ontable(v1), on(v1, v1)} and eleven ele-
ments for the model of stack(v1,v2), Istack,Ψ ={handempty, holding(v1),
holding(v2), clear(v1),clear(v2),ontable(v1),ontable(v2),
on(v1, v1),on(v1, v2), on(v2, v1), on(v2, v2)}. Hence, solving a Λ =
〈M,O〉 learning task is determining which elements of Iξ,Ψ will shape the
preconditions, positive effects, and negative effects of the corresponding action
model.

In principle, for a given STRIPS action model ξ , any element of Iξ,Ψ can
potentially appear in pre(ξ), del(ξ), and add(ξ). In practice, the actual space of
possible STRIPS schemata is bounded by:

1. Syntactic constraints. The solution M′ must be consistent with the STRIPS

constraints: del(ξ) ⊆ pre(ξ), del(ξ) ∩ add(ξ) = ∅, and pre(ξ) ∩ add(ξ) = ∅.
Typing constraints are also a type of syntactic constraint that reduce the size of
Iξ,Ψ [16].

2. Observation constraints. The solution M′ must be consistent with these
semantic constraints derived from the input observation O. Specifically, the
states induced by plans computable with M′ must comprise the observed states
of the sample, which further constrains the space of possible action models.

Considering only the syntactic constraints, the size of the space of possible
STRIPS models is given by 22×|IΨ,ξ | because one element in Iξ,Ψ can appear
both in the preconditions and effects of ξ . Given p ∈ IΨ,ξ , the belonging of p

to the preconditions, positive effects, or negative effects of ξ is handled with a
propositional encoding that uses fluents of two types, prep,ξ and effp,ξ . The four
possible combinations of these two fluents are summarized in Fig. 1.1. This compact
encoding allows for a more effective exploitation of the syntactic constraints, and
also yields the solution space of Λ = 〈M,O〉 to be the same as its search space.

To illustrate better this encoding, Fig. 1.2 shows the PDDL encoding of the
stack(?v1,?v2) schema and our propositional representation for this same
schema with prep,stack and effp,stack fluents (p ∈ IΨ,stack).
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Fig. 1.1 Combinations of the propositional encoding and their meaning

(:action stack
:parameters (?v1 ?v2)
:precondition (and (holding ?v1) (clear ?v2))
:effect (and (not (holding ?v1)) (not (clear ?v2))

(clear ?v1) (handempty) (on ?v1 ?v2)))

(pre_holding_v1_stack) (pre_clear_v2_stack)
(eff_holding_v1_stack) (eff_clear_v2_stack)
(eff_clear_v1_stack) (eff_handempty_stack) (eff_on_v1_v2_stack)

Fig. 1.2 PDDL encoding of the stack(?v1,?v2) schema and our propositional representation
for this same schema

(:predicates (on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:objects blockA blockB blockC)
(:init (ontable blockA) (on blockB blockA) (clear blockB) (handempty))
(:observation (on blockA blockB))

Fig. 1.3 Example of a two-state observation for the learning of STRIPS action models in the
blocksworld domain

3.2 The Sampling Space

According to our observation model the minimal expression of an observation must
comprise at least two state observations O = 〈so

0 , so
m〉, a fully observable initial

state so
0 and a partially observed final state so

m. Figure 1.3 shows an example of
O = 〈so

0 , so
m〉 observation that contains only two states. An initial state of the

blocksworld where the robot hand is empty and there are two blocks (blockB on
top of blockA). The observation represents also a partially observable final state
in which blockA is on top of blockB.

On the other hand, the maximal expression of an observation corresponds to
a fully observed trajectory O = τ , meaning that all traversed states, and applied
actions, are fully observed. Between our minimal and maximal expressions of
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observation, there exists a whole range of possible degrees of observability. For
example, the majority of learning systems such as ARMS [27] or SLAF [2] use
observations that comprise the initial state and all the actions of the executed plan.

4 Learning STRIPS Action Models with Classical Planning

Our approach to address a learning task Λ = 〈M,O〉 is to compile it into a classical
planning problem PΛ. The intuition behind the compilation is that when PΛ is
solved, the solution plan πΛ is a sequence of actions that build the output model
M′ and verify that M′ explains the observation O.

A solution plan πΛ includes then two differentiated blocks of actions: a
plan prefix with a set of actions, each defining the insertion of a fluent as
a precondition or an effect of an action model and a plan postfix with a set
of actions that determine the application of the learned modes while succes-
sively validating the effects of the action application in every partial state of O.
Roughly speaking, in the blocksworld, the format of the first block of actions
of πΛ looks like (insert_pre_stack_holding_v1), (insert_eff_
stack_clear_v1), (insert_eff_stack_holding_v1). . . , where the
first effect denotes a positive effect and the second one a negative fluent to be
inserted in name(ξ) = stack; and the format of the second block of actions
of πΛ is like (apply_unstack blockB blockA),(apply_putdown
blockB), and (validate_1), (validate_2), where the last two actions
denote the points at which the states generated through the action application must
be validated with the observed states in O.

4.1 Compilation

Given a learning task Λ = 〈M,O〉 the compilation outputs a classical planning
task PΛ = 〈FΛ,AΛ, IΛ,GΛ〉 such that:

– FΛ extends the set of fluents F (obtained from so
0 ) with the model fluents that

are used to represent the preconditions and effects of each ξ ∈ M as well as
some other fluents to keep track of the validation of O. Specifically, FΛ contains
also:

• Fluents prep,ξ and effp,ξ , defined as explained in Sect. 3.1.
• A set of fluents {testj }0≤j≤m to point at the state observation so

j ∈ O where
the action model is validated. In the example of Fig. 1.3 two tests are required
to validate the programmed action model, one corresponding to the initial state
and the second one corresponding to the final state.
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• A fluent, modeprog , to indicate whether action models are being programmed
or validated and a fluent invalid to indicate that the programmed action model
is inconsistent with the input observation.

– IΛ encodes so
0 and the following fluents set to true: modeprog , test0. Our

compilation assumes that action models are initially programmed with no
precondition, no negative effect, and no positive effect.

– GΛ includes the positive literal testm and the negative literal ¬invalid. When
these goals are achieved by the solution plan πΛ, we will be certain that the
action models of M′ are validated in the input observation.

– AΛ includes three types of actions that give rise to the actions of πΛ.

1. Actions for inserting a precondition or effect into ξ ∈ M following the
syntactic constraints of STRIPS models. These actions will form the prefix
of the solution plan πΛ. Among the inserting actions, we find:

• Actions for inserting a precondition p ∈ Iξ,Ψ into ξ .

pre(insertPrep,ξ ) ={¬prep,ξ ,modeprog},
cond(insertPrep,ξ ) ={∅} � {prep,ξ }.

• Actions for inserting an effect p ∈ Iξ,Ψ into ξ .

pre(insertEffp,ξ ) ={¬effp,ξ ,modeprog},
cond(insertEffp,ξ ) ={∅} � {effp,ξ }

For instance, given name(ξ)= stack and {(pre_stack_holding_v1),
(pre_stack_holding_v2),(pre_stack_on_v1_v2),(pre_stack
_clear_v1), (pre_stack_clear_v1), . . .}, the insertion of each item
p ∈ Iξ,Ψ in ξ will generate a different alternative in the search space when
solving PΛ. The same applies to effects {(eff_stack_holding_v1),
(eff_stack_holding_v2), (eff_stack_on_v1_v2), (eff_
stack_clear_v1), (eff_stack_clear_v1),. . .}.
Note that executing an insert action, e.g., (insert_pre_stack_holding
_v1), will add the corresponding model fluent (pre_stack_holding
_v1) to the successor state. Hence, the execution of the insert actions of
πΛ yields a state containing the valuation of the model fluents that shape
every ξ ∈ M. For example, executing the insert actions that shape the action
model name(ξ) = putdown leads to a state containing the positive literals
(pre_putdown_holding_v1),(eff_putdown_holding_v1),

(eff_putdown_clear_v1),(eff_putdown_ontable_v1),
(eff_putdown_handempty).

2. Actions for applying the action models ξ ∈ M built by the insert actions and
bounded to objects ω ⊆ Ωar(ξ). These actions will be part of the postfix of
the plan πΛ and they determine the application of the learned action models
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according to the values of the model fluents in the current state configuration.
Since action headers are known, the variables pars(ξ) are bounded to the
objects in ω that appear in the same position.

pre(applyξ,ω) = {},
cond(applyξ,ω) = {prep,ξ ∧ effp,ξ } � {¬p(ω)}∀p∈Ψξ ,

{¬prep,ξ ∧ effp,ξ } � {p(ω)}∀p∈Ψ ξ ,

{prep,ξ ∧ ¬p(ω)}∀p∈Ψξ � {invalid},
{modeprog} � {¬modeprog}.

Figure 1.4 shows the PDDL encoding of (apply_stack) for applying
the action model of the stack operator. Let us assume the action
(apply_stack blockB blockA) is in πΛ. Executing this action in a
state s implies activating the preconditions and effects of (apply_stack)
according to the values of the model fluents in s. For example, if {
(pre_stack_holding_v1),(pre_stack_clear_v2)} ⊂ s, then it
must be checked that positive literals (holding blockB) and (clear

(:action apply_stack
:parameters (?o1 - object ?o2 - object)
:precondition (and )
:effect (and (when (and (pre_stack_on_v1_v1) (eff_stack_on_v1_v1)) (not (on ?o1 ?o1)))

(when (and (pre_stack_on_v1_v2) (eff_stack_on_v1_v2)) (not (on ?o1 ?o2)))
(when (and (pre_stack_on_v2_v1) (eff_stack_on_v2_v1)) (not (on ?o2 ?o1)))
(when (and (pre_stack_on_v2_v2) (eff_stack_on_v2_v2)) (not (on ?o2 ?o2)))
(when (and (pre_stack_ontable_v1) (eff_stack_ontable_v1)) (not (ontable ?o1)))
(when (and (pre_stack_ontable_v2) (eff_stack_ontable_v2)) (not (ontable ?o2)))
(when (and (pre_stack_clear_v1) (eff_stack_clear_v1)) (not (clear ?o1)))
(when (and (pre_stack_clear_v2) (eff_stack_clear_v2)) (not (clear ?o2)))
(when (and (pre_stack_holding_v1) (eff_stack_holding_v1)) (not (holding ?o1)))
(when (and (pre_stack_holding_v2) (eff_stack_holding_v2)) (not (holding ?o2)))
(when (and (pre_stack_handempty) (eff_stack_handempty)) (not (handempty)))
(when (and (not (pre_stack_on_v1_v1)) (eff_stack_on_v1_v1)) (on ?o1 ?o1))
(when (and (not (pre_stack_on_v1_v2)) (eff_stack_on_v1_v2)) (on ?o1 ?o2))
(when (and (not (pre_stack_on_v2_v1)) (eff_stack_on_v2_v1)) (on ?o2 ?o1))
(when (and (not (pre_stack_on_v2_v2)) (eff_stack_on_v2_v2)) (on ?o2 ?o2))
(when (and (not (pre_stack_ontable_v1)) (eff_stack_ontable_v1)) (ontable ?o1))
(when (and (not (pre_stack_ontable_v2)) (eff_stack_ontable_v2)) (ontable ?o2))
(when (and (not (pre_stack_clear_v1)) (eff_stack_clear_v1)) (clear ?o1))
(when (and (not (pre_stack_clear_v2)) (eff_stack_clear_v2)) (clear ?o2))
(when (and (not (pre_stack_holding_v1)) (eff_stack_holding_v1)) (holding ?o1))
(when (and (not (pre_stack_holding_v2)) (eff_stack_holding_v2)) (holding ?o2))
(when (and (not (pre_stack_handempty)) (eff_stack_handempty)) (handempty))
(when (and (pre_stack_on_v1_v1) (not (on ?o1 ?o1))) (invalid))
(when (and (pre_stack_on_v1_v2) (not (on ?o1 ?o2))) (invalid))
(when (and (pre_stack_on_v2_v1) (not (on ?o2 ?o1))) (invalid))
(when (and (pre_stack_on_v2_v2) (not (on ?o2 ?o2))) (invalid))
(when (and (pre_stack_ontable_v1) (not (ontable ?o1))) (invalid))
(when (and (pre_stack_ontable_v2) (not (ontable ?o2))) (invalid))
(when (and (pre_stack_clear_v1) (not (clear ?o1))) (invalid))
(when (and (pre_stack_clear_v2) (not (clear ?o2))) (invalid))
(when (and (pre_stack_holding_v1) (not (holding ?o1))) (invalid))
(when (and (pre_stack_holding_v2) (not (holding ?o2))) (invalid))
(when (and (pre_stack_handempty) (not (handempty))) (invalid))
(when (modeProg) (not (modeProg)))))

Fig. 1.4 PDDL action for applying an already programmed model for stack
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blockA) hold in s. Otherwise, a different set of precondition literals will
be checked. The same applies to the conditional effects, generating the
corresponding literals according to the values of the model fluents of s.
Note that executing an apply action, e.g., (apply_stack blockB
blockA), will add the literals (on blockB blockA),(clear
blockB),(not(clear blockA)),(handempty), and (not(clear
blockB)) to the successor state if name(ξ) = stack has been correctly
programmed by the insert actions. Hence, while insert actions add the values
of the model fluents that shape ξ , the apply actions add the values of the
fluents of F that result from the execution of ξ .
When the input plan trace contains observed actions extra preconditions have
to be added to ensure that actions are applied in the same order as they appear
in O [1].

3. Actions for validating partially observed states so
j ∈ O. These actions are also

part of the postfix of the solution plan πΛ and they are aimed at checking that
the observation O follows after the execution of the apply actions.

pre(validatej) =so
j ∪ {testj−1},

cond(validatej) ={∅} � {¬testj−1, testj }.

There will be a validate action in πΛ for every observed state in O. The
position of the validate actions in πΛ will be determined by the planner
by checking that the state resulting after the execution of an apply action
comprises the observed state so

j ∈ O.

In some contexts, it is reasonable to assume that some parts of the action model
are known and so there is no need to learn the entire model from scratch [28]. In
our compilation approach, when an action model ξ is partially specified, the known
preconditions and effects are encoded as fluents prep,ξ and effp,ξ set to true in
the initial state IΛ. In this case, the corresponding insert actions, insertPrep,ξ and
insertEffp,ξ , become unnecessary making the classical planning task PΛ easier to
be solved.

So far we explained the compilation for learning from a single input trace. How-
ever, the compilation is extensible to the more general case Λ = 〈M,O1, . . . ,Ok〉
where there is an input set of k observations. Taking this into account, a small
modification is required in our compilation approach. In particular, the actions in
PΛ for validating the last state so

m,t ∈ Ot , 1 ≤ t ≤ k of an observation Ot reset
the current state. These actions are now redefined as follows:

pre(validatej) = so
m,t ∪ {testj−1} ∪ {¬modeprog},

cond(validatej) = {∅} � {¬testj−1, testj }∪
{¬f }∀f ∈F,f /∈so

0,t+1
∪ {f }∀f ∈so

0,t+1
.
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Fig. 1.5 Plan for
programming the stack

action model and for
validating the programmed
stack action model with
previously specified action
models for pickup,
putdown, and unstack

Finally, we will detail the composition of a solution plan πΛ to a planning task
PΛ and the mechanism to extract the action models of M′ from πΛ. The plan of
Fig. 1.5 shows a solution to the task PΛ that encodes a learning task Λ = 〈M,O〉
for obtaining the action models of the blocksworld domain, where the models for
pickup, putdown, and unstack are already specified in M. Therefore, the
plan shows the insert actions and validate action for the action model stack. Plan
steps 00–01 insert the preconditions of the stack model, steps 02–06 insert the
action model effects, and steps 07–11 form the plan postfix that applies the action
models (only the stack model is learned) and validates the result in the input
observation.

Given a solution plan πΛ that solves PΛ, the set of action models M′ that solves
Λ = 〈M,O〉 learning task is computed in linear time and space. In order to do
so, πΛ is executed in the initial state IΛ and the action model M′ will be given by
the fluents prep,ξ , and effp,ξ that are set to true in the last state reached by πΛ,
sg = θ(IΛ, πΛ). For each ξ ∈ M′, we build the sets of preconditions, positive
effects, and negative effects as follows:

pre(ξ) ={p | prep,ξ ∈ sg}∀p∈Ψξ ,

del(ξ) ={p | prep,ξ ∈ sg ∧ effp,ξ ∈ sg}∀p∈Ψξ ,

add(ξ) ={p | ¬prep,ξ ∈ sg ∧ effp,ξ ∈ sg}∀p∈Ψξ .

An optimally solved learning task will learn the minimum set of required
preconditions; i.e., those that are at the same time negative effects. Optionally, it
is possible to infer the maximum set of preconditions that is consistent with the
observation and the learned model. This is done via a post-process based on the
one proposed by the LOUGA system [15]. The intuition is going through every
action counting the number of cases where a literal is present before the action
is executed. If a literal is present in all the cases before the action, the literal is
considered to be a precondition. This is done by traversing the actions/states found
in the validation part of the solution plan πΛ. For instance, in the example of Fig. 1.5,
the used sequence of actions is (unstack blockB blockA), (put-down
blockB), (pick-up blockA), and (stack blockA blockB).
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4.2 Properties of the Compilation

Lemma 1 Soundness. Any classical plan π that solves PΛ produces a model M′
that solves the Λ = 〈M,O〉 learning task.

Proof According to the PΛ compilation, once a given precondition or effect is
inserted into the domain model M it cannot be undone. In addition, once an action
model is applied it cannot be modified. In the compiled planning problem PΛ, only
(apply)ξ,ω actions can update the value of the state fluents F . This means that a
state consistent with an observation so

m can only be achieved executing an applicable
sequence of (apply)ξ,ω actions that, starting in the corresponding initial state so

0 ,
validates that every generated intermediate state sj (0 < j ≤ m), is consistent with
the input state observations. This is exactly the definition of the solution condition
for model M′ to solve the Λ = 〈M,O〉 learning task.

Lemma 2 Completeness. Any model M′ that solves the Λ = 〈M,O〉 learning
task can be computed with a classical plan π that solves PΛ.

Proof By definition Iξ,Ψ fully captures the set of elements that can appear in
an action model ξ using predicates Ψ . In addition the PΛ compilation does not
discard any model M′ definable within Iξ,Ψ . This means that, for every model M′
that solves the Λ = 〈M,O〉, we can build a plan π that solves PΛ by selecting
the appropriate (insertpre)p,,ξ and (inserteff)p,ξ actions for programming
the precondition and effects of the corresponding action models in M′ and then,
selecting the corresponding (apply)ξ,ω actions that transform the initial state
observation so

0 into the final state observation so
m.

The size of the classical planning problem PΛ depends on the arity of the
predicates in Ψ , that shape variables F , and the number of parameters of the action
models, |pars(ξ)|. The larger these arities, the larger |Iξ,Ψ |. The size of Iξ,Ψ is
the most dominant factor of the compilation because it defines the prep,ξ /effp,ξ

fluents, the corresponding set of insert actions, and the number of conditional
effects in the (apply)ξ,ω actions. Note that typing can be used straightforward to
constrain the FOL interpretations of Ψ over the parameters pars(ξ), which will
significantly reduce |Iξ,Ψ | and hence the size of PΛ output by the compilation.

Classical planners tend to prefer shorter solution plans, so our compilation may
introduce a bias to Λ = 〈M,O〉 learning tasks preferring solutions that are referred
to action models with a shorter number of preconditions/effects. In more detail, all
{prep,ξ , effp,ξ }∀e∈Iξ,Ψ

fluents are false at the initial state of our PΛ compilation
so classical planners tend to solve PΛ with plans that require a smaller number of
insert actions.

This bias can be eliminated defining a cost function for the actions in PΛ (e.g.,
insert actions have zero cost, while (apply)ξ,ω actions have a positive constant
cost). In practice we use a different approach to disregard the cost of insert
actions since classical planners are not proficient at optimizing plan cost with zero-
cost actions. Instead, our approach is to use a SAT-based planner [21] that can apply
all actions for inserting preconditions in a single planning step (these actions do
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not interact). Further, the actions for inserting action effects are also applied in
another single planning step. The plan horizon for programming any action model
is then always bounded to 2. The SAT-based planning approach is also convenient
for its ability to deal with planning problems populated with dead-ends and because
symmetries in the insertion of preconditions/effects into an action model do not
affect the planning performance.

An interesting aspect of our approach is that when a fully or partially specified
STRIPS action model M is given in Λ, the PΛ compilation also serves to validate
whether the observation O follows the given model M:

– M is proved to be a valid action model for the given input data O iff a solution
plan for PΛ can be found.

– M is proved to be a invalid action model for the given input data O iff PΛ is
unsolvable. This means that M cannot be consistent with the given observation
of the plan execution.

This validation capacity of our compilation is beyond the functionality of VAL (the
plan validation tool [12]) because our PΛ compilation is able to address model
validation of a partial (or even an empty) action model with a partially observed plan
trace. VAL, however, requires a full plan and a full action model for plan validation.

5 Experimental Results

We have tested the proposed explanation-based learning approach in 12 IPC
domains that satisfy the STRIPS requirement [7], taken from the PLAN-
NING.DOMAINS repository [18]. In our experiments, we use a set of 5 observations
of length 5–7 as learning examples. Each observation corresponds to plan executions
generated via random walks. All experiments are run on an Intel Core i5 3.10 GHz
× 4 with 16 GB of RAM.

The learned models are evaluated using the precision and recall metrics for
action models proposed in [1], which compare the learned models against the
reference model. Precision measures the correctness of the learned models, while
recall measures their completeness. Formally

Precision = tp

tp + fp

Recall = tp

tp + f n
,

where tp (true positives) is the number of predicates that appear in both the learned
and reference action models, fp (false positives) is the number of predicates that
appear in the learned action model but not in the reference model, and f n (false
negatives) is the number of predicates that should appear in the learned action model
but are missing.
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Table 1.1 Precision and recall scores for learning tasks from labeled plans

Pre Add Del Global

P R P R P R P R

Blocks 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Driverlog 0.9 0.64 0.56 0.71 0.86 0.86 0.78 0.73

Ferry 1.0 0.57 1.0 1.0 1.0 1.0 1.0 0.86

Floortile 0.68 0.68 0.89 0.73 1.0 0.82 0.86 0.74

Grid 0.79 0.65 1.0 0.86 0.88 1.0 0.89 0.83

Gripper 1.0 0.67 1.0 1.0 1.0 1.0 1.0 0.89

Hanoi 0.75 0.75 1.0 1.0 1.0 1.0 0.92 0.92

Miconic 0.89 0.89 1.0 0.75 0.75 1.0 0.88 0.88

Satellite 0.82 0.64 1.0 1.0 1.0 0.75 0.94 0.80

Transport 1.0 0.70 0.83 1.0 1.0 0.80 0.94 0.83

Visitall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Zenotravel 1.0 0.64 0.88 1.0 1.0 0.71 0.96 0.79

0.90 0.74 0.93 0.92 0.96 0.91 0.93 0.86

5.1 Learning from Labeled Plans

For our first experiment, we use the setting typically followed by most approaches,
that is, learning from observations consisting of initial and final states, and the full
sequence of actions between these two. In this setting, the number of trajectories
that explain a given observation is bounded by the length of the observation and
further constrained by the observed sequence of actions.

The results of this experiment are compiled in Table 1.1. Precision (P) and recall
(R) are computed separately for the preconditions (Pre), positive effects (Add), and
negative effects (Del), while the last two columns and the last row report average
scores. The table show high scores across all domains, with an average precision
of 0.93 and average recall of 0.86. Recall is noticeably lower for preconditions at
0.74, which is to be expected given that any relaxation on the preconditions of the
reference model will still be able to generate an explanation for the observation.

5.2 Learning from Initial/Final State Pairs

Now, we evaluate our approach when observations are reduced to their minimal
expression O = 〈so

0 , so
m〉; i.e., only the initial and final states are observed. In

contrast to the previous experiment, this setting presents an unbounded number of
trajectories consistent with the observation. Moreover, the planner must determine
how many “gaps” need to be filled between the two observed states.

Table 1.2 summarizes the results obtained for this experiment. Values for the
Zenotravel and Grid domains are not reported because no solutions were found
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Table 1.2 Precision and recall scores for learning tasks from initial and final states

Pre Add Del Global

P R P R P R P R

Blocks 0.75 0.67 0.86 0.67 0.86 0.67 0.82 0.67

Driverlog 1 0.29 0.5 0.71 0.67 0.29 0.72 0.43

Ferry 1 0.57 1 1 1 1 1 0.86

Floortile 0.57 0.36 1 0.64 0.67 0.36 0.75 0.45

Grid – – – – – – – –

Gripper 1 0.67 1 1 1 1 1 0.89

Hanoi 1 0.5 1 1 1 1 1 0.83

Miconic 0.5 0.11 0.67 0.5 0.5 0.33 0.56 0.31

Satellite 0.5 0.21 0.57 0.8 0.75 0.75 0.61 0.59

Transport 1 0.3 0.71 1 1 0.6 0.9 0.63

Visitall – – – – – – – –

Zenotravel 1 0.29 0.57 0.57 1 0.57 0.86 0.48

0.83 0.4 0.79 0.79 0.85 0.66 0.82 0.61

under the given timeout of 1000 s. Although the learned models are able to produce
explanations for the input observations, we can see that the values of precision
and recall are significantly lower than in Table 1.1. This is indicative that the
learned models are now considerably different from the reference ones, which is
caused by the larger solution space originated from the removal of some observation
constraints.

6 Conclusions

We presented a classical planning compilation for learning STRIPS action models
from partial observations of plan executions. To the best of our knowledge, this
is the first approach on learning action models that is exhaustively evaluated over
a wide range of domains and uses exclusively an off-the-shelf classical planner.
The work in [26] proposes a planning compilation for learning action models from
plan traces following the finite domain representation for the state variables. This
is a theoretical study on the boundaries of the learned models and no experimental
results are reported.

When example plans are available, we can compute accurate action models from
small sets of learning examples (five examples per domain) in little computation
time (less than a second). When action plans are not available, our approach still
produces action models that are compliant with the input information. In this case,
since learning is not constrained by actions, operators can be reformulated changing
their semantics, in which case the comparison with a reference model turns out to
be tricky.
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An interesting research direction related to this issue is domain reformulation to
use actions in a more efficient way, reduce the set of actions identifying dispensable
information or exploiting features that allow more compact solutions like the
reachable or movable features in the Sokoban domain [13].

Generating informative examples for learning planning action models is still
an open issue. Planning actions include preconditions that are only satisfied by
specific sequences of actions which have low probability of being chosen by
chance [5]. The success of recent algorithms for exploring planning tasks [8]
motivates the development of novel techniques that enable to autonomously collect
informative learning examples. The combination of such exploration techniques
with our learning approach is an appealing research direction that opens up the door
to the bootstrapping of planning action models.
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