
Observation Decoding with Sensor Models: Recognition Tasks via Classical
Planning

Diego Aineto and Sergio Jimenez and Eva Onaindia
Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
{dieaigar, serjice, onaindia}@vrain.com

Abstract

Observation decoding aims at discovering the underlying
state trajectory of an acting agent from a sequence of observa-
tions. This task is at the core of various recognition activities
that exploit planning as resolution method but there is a gen-
eral lack of formal approaches that reason about the partial
information received by the observer or leverage the distri-
bution of the observations emitted by the sensors. In this pa-
per, we formalize the observation decoding task exploiting a
probabilistic sensor model to build more accurate hypothesis
about the behaviour of the acting agent. Our proposal extends
the expressiveness of former recognition approaches by ac-
cepting observation sequences where one observation of the
sequence can represent the reading of more than one variable,
thus enabling observations over actions and partially observ-
able states simultaneously. We formulate the probability dis-
tribution of the observations perceived when the agent per-
forms an action or visits a state as a classical cost planning
task that is solved with an optimal planner. The experiments
will show that exploiting a sensor model increases the accu-
racy of predicting the agent behaviour in four different con-
texts.

Introduction
In recent years, the interest in recognition tasks has grown in
the planning community. Plan recognition, and in particular
the approach presented in (Ramı́rez and Geffner 2010), is
probably the most notable example among the recognition
tasks related to planning. This work showed that predicting
the goals and plans of an acting agent can be addressed via
planning, transforming the recognition task to plan genera-
tion. This reduction-to-planning scheme, which uses a plan-
ner to fill the gaps in an incomplete observation sequence,
was later adopted by many other recognition tasks; e.g., goal
recognition design (GRD) (Keren, Gal, and Karpas 2014),
counter-planning (Pozanco et al. 2018) or model recogni-
tion (Aineto et al. 2019).

A key component of a recognition task is the definition of
the partial information received by the observer. Formally,
a sensor model is a function that specifies how likely it
is to perceive some observation from a given state. Vision
sensors, for instance, are more likely to provide unreliable

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

readings in the absence of light, while the readings of tem-
perature sensors become more erroneous at extreme tem-
peratures. The common assumption of the approaches cited
above is, however, to ignore the distribution of the obser-
vations, thus assuming all observations are uniformly dis-
tributed. In general, little attention has been paid to formaliz-
ing the sensing model of the observer, and most works adopt
a simplistic view that disregards how the input observations
are produced. This is also the case of approaches to goal
recognition in non-deterministic environments that reduce
the sensor model of the observer to a Boolean problem ac-
cording to whether the execution of the agent complies with
the observation or not (Ramı́rez and Geffner 2011). The con-
trolled observability planning problem defined in (Kulkarni,
Srivastava, and Kambhampati 2019) introduces a determin-
istic observer sensor model able to produce the same obser-
vation for different state-action pairs. More recently, some
researchers define noisy (non-deterministic) sensor models
that emit one among several possible tokens for an executed
action in the context of GRD (Keren, Gal, and Karpas 2019).
It is worth noting that all these cited latter works only handle
observations over actions.

In this work we build upon the ideas presented in
(Ramı́rez and Geffner 2010), to posit the problem of obser-
vation decoding, which consists in finding the most probable
state trajectory for a given observation sequence. Our ex-
tension exploits rich sensor models to build more informed
hypothesis about the behaviour of the acting agent. In do-
ing so, we also address one of the more limiting factors of
(Ramı́rez and Geffner 2010) which has been inherited by the
derived approaches, the single fluent observations. This lim-
itation has meant that so far, the observer agent was only
able to observe one single element at a time, be it an action
or a state variable (Sohrabi, Riabov, and Udrea 2016). This
new understanding of the core task enables the formulation
of a general framework capable of recognizing any combi-
nation of the elements involved in the execution of an agent,
namely the states, actions or goals.

Figure 1 shows an scenario where exploiting a sensor
model helps us make more accurate predictions about the
unobserved actions of an agent that is navigating a 5×5 grid.
According to its action model, we know the agent can only
move one cell at a time, in any of the four directions N,S,W
or E, and all moves have a unitary cost. In this example we

o1

o2

o3

Figure 1: A three-observation sequence O=(o1, o2, o3) of
the actual location of an agent in a 5× 5 grid, and two plans
(solid and dotted arrows) that might generate the given ob-
servation sequence.

have open tiles (in white) and covered tiles (grey), and we
use a zenith camera to observe the agent. We also have a
sensor model that specifies that the camera can pinpoint the
location of the agent with 90% reliability when the agent
is on an open tile, but it is unable to locate the agent when
it is moving through the covered tiles (e.g. because there is
no line of sight). The observation sequence collected by the
camera is denoted by (o1, o2, o3). The solid and dotted ar-
rows represent two hypothesis on the agent trajectory that
may be induced from the observations. Taking into account
just the observations and the action model, the most rational
hypothesis is that the agent followed the dotted arrow from
o1 to o3. However, if we consider a richer planning model
that includes also what we know about the camera (our sen-
sor in this example), we would claim that it is more likely the
agent follows the trajectory represented by the solid arrow.

Probabilistic sensor models are commonly used for plan
generation of an acting agent in partially observable envi-
ronments like in POMDPs (Kaelbling, Littman, and Cassan-
dra 1998; Silver and Veness 2010). They are also an indis-
pensable component of generative models like HMMs and
DBNs (Ghahramani 2001) for uncovering states in predic-
tive tasks. Actually, exploiting a probabilistic sensor model
in PR can be assimilated to an inference task under a proba-
bilistic model. Bayesian inference techniques have shown
to work well for PR in human activities (Nazerfard and
Cook 2015) as well as other techniques such as topic model-
ing (Freedman, Jung, and Zilberstein 2014). However, they
are not particularly well suited for partial input observations
or decoding gapped sequences observed at randomly chosen
instants. While Hidden semi-Markov models are proposed
to address missing observations associated to state transi-
tion in probabilistic models (Yu 2016), our proposal relies
on exploiting planning models alongside a probabilistic sen-
sor model to determine how likely an observation is. Thus,
our proposal can be regarded as an approach that combines
the predictive power of linear-time generative models with
the expressive power of a planning formalism.

In summary, the specific contributions of this paper are:

1. The formalization of the observation decoding task that
leverages a probabilistic sensor model to build more ac-

curate hypothesis about the behaviour of the acting agent.

2. A method for reducing observation decoding to plan gen-
eration and solving it with an optimal planner.

3. Our model accepts observation sequences where each ob-
servation can be a set of observable tokens. The classi-
cal interpretation of this is that the observer agent may
perceive both actions and partial states. The model also
supports a different set of variables (alphabet) for the ob-
servations.

Background
A planning problem is a tuple P = 〈F,A, I,G〉, where F is
a finite set of fluent symbols that denote the state variables,
A is a set of deterministic actions with preconditions pre(a)
and effects eff(a), I is the initial state of the problem and
G is the goal condition. L(F) is the set of all literal sets on
F , i.e. all partial assignments of values to fluents, such that
pre(a) ∈ L(F) and eff(a) ∈ L(F). A problem state s is a
full assignment of values to fluents in which every fluent of
F is assigned a value true (f) or false (¬f); i.e. |s| = |F |.
An action a is applicable in a state s if pre(a) ⊆ s. The
successor state is defined as θ(s, a) = {s\¬eff(a)∪eff(a)},
where ¬eff(a) is the complement of eff(a) to ensure that the
successor state is a well-defined state with all state variables
F set to true or false. We assume that the cost of executing
an action a ∈ A is given by the non-negative cost function
c(a). Given a planning problem P = 〈F,A, I,G〉, we define
the tupleM = 〈F,A〉 as the planning model of P .

A plan π for P is an action sequence π = 〈a1, . . . , an〉,
and |π| = n denotes the plan length. The execution of
π in the initial state I of P induces a trajectory τ =
〈s0, a1, s1, . . . , an, sn〉 such that s0 = I and, for each
1 ≤ i ≤ n, it holds that ai is applicable in si−1, and
si = θ(si−1, ai). A plan π solves P if G holds in the last
state of the induced trajectory τ ; i.e., G ⊆ sn. The cost of a
plan π = 〈a1, . . . , an〉 is c(π) =

∑n
i=1 c(ai) and we say it

is optimal if its cost is minimal.
Many tasks require input observations that represent the

information which is actually observable when an agent
executes a plan π for solving a problem P in a particu-
lar context. An observation sequence is denoted as O =
〈o1, . . . , on〉 where oi represents the observation at the i-th
step of π’s execution.

In action model learning, it is commonly assumed that
O is, at least, a fully-observable action sequence; that is, O
contains all the actions of π done by the agent, possibly en-
coded as a fluent in each oi. This is the case of well-known
systems like ARMS (Yang, Wu, and Jiang 2007), SLAF
(Amir and Chang 2008), LOUGA (Kucera and Barták 2018)
or LOCM (Cresswell, McCluskey, and West 2013). WhenO
is a complete action sequence (it may additionally contain
observable fluents of the state trajectory), it means there are
no gaps in O and so |π| is known. Without entering into the
discussion whether it is sensible to assume that the sensors
reliably emit a signal for each executed action, a clear advan-
tage of knowing the length of the plan is that it enables using
bounded reasoning techniques. A notable exception to this
assumption is FAMA (Aineto, Jiménez, and Onaindia 2019),

which supports observations as minimal as O = 〈o1, o2〉,
where o1 = I and o2 is an observation of the goal state.

The pioneering work on plan recognition presented
in (Ramı́rez and Geffner 2009; Ramı́rez and Geffner 2010)
accepts incomplete observation sequences (|O| ≤ |π|),
where each oi ∈ O is an action ofA. This approach applies a
transformation to compile away the observations by encod-
ing them as extra fluents of F , extra actions of A and extra
goals of G. A subsequent extension to this work (Sohrabi,
Riabov, and Udrea 2016) addresses observations over flu-
ents rather than actions, and handles unreliable observations
in the form of noisy and missing observations. A limitation
of this model is, however, that each oi of O is constrained to
be a single fluent of F .

The formulation of GRD in partially observable environ-
ments (Keren, Gal, and Karpas 2019) considers sensor mod-
els that account for non-observable actions, low-sensor res-
olution models that emit the same observation token for dif-
ferent actions, and noisy (non-deterministic) sensor models
that emit one among several possible tokens for an executed
action. In all these models, observable tokens are associated
to observations over actions.

Our proposal also exploits sensor models that emit in-
complete observation sequences, but unlike the above ap-
proaches each oi of O is a set of observable tokens repre-
senting an action observation, observations over fluents or
a combination of both. This way, we can handle different
alphabets of symbols for the joint emission of observations
over A and F .

The sensor model
We extend the classical planning modelMt = 〈F,A〉 with
a sensor model Me that specifies the observations emitted
(and perceived by the observer) from a given state.

We compactly represent a probabilistic sensor model with
the pairMe = 〈Y,Φ〉, where:

• Y = {Y1, . . . , Yn} is a set of observable variables; a vari-
able Yi ∈ Y has a finite domain DYi which values are
given by the sensor reading. The symbol ε is used to rep-
resent the empty sensor reading.

• Φ is a set of functions ΦYi
: DYi

× S → [0, 1], ∀Yi ∈ Y ,
that denote the probability of observing a token v ∈ DYi

in a state s ∈ S. The function ΦYi is defined as a dis-
crete probability distribution P (Yi = v|S = s) that maps
a state s to a weighted disjunction of observable atoms
Yi = v. Since ΦYi defines a probability distribution, it
must hold that

∑
v∈DYi

ΦYi
(v, s) = 1, for all s ∈ S.

In practice, many states share the same probability distri-
bution for the emission of the observable variables so it is
often better to define ΦYi for sets of states. A compact way
to do this is to define a condition c ∈ L(F) so that Sc ⊆ S
is the subset of states such that ∀s ∈ Sc, c ⊆ s. Thus, c
determines the set of states Sc with the same observability
conditions (e.g. the location of a robot is observable from a
well-lit room). We will use this notation in the rest of the
paper when the set of states Sc for a given condition c are
uniquely identified.

This sensor model enables the emission of observations
when the state representation, F , and the observable vari-
ables, Y , do not share the same alphabet; i.e., Y * F .
This way, variables Y can be used to represent both obser-
vations over states and actions. Sensor models of this kind
are used, for instance, for the derivation of Finite State Con-
trollers (Bonet, Palacios, and Geffner 2009; 2010).

We now define the notion of observation supported in this
work.

Definition 1 (Observation). Given a planning modelMt =
〈F,A〉 extended with a sensor modelMe = 〈Y,Φ〉, an ob-
servation o = 〈Y1 = v1, . . . , Yn = vn〉 is a total assignment
of the observable variables Y with values within DYi

∪ {ε}
for each Yi ∈ Y .

Given Mt = 〈F,A〉 extended with a sensor model
Me = 〈Y,Φ〉, an observation sequence is denoted as O =
〈o1, o2, . . . , om〉, where each oi ∈ O is an observation.
Since O can be an incomplete observation sequence, the to-
tal number of states traversed by the acting agent may be
unknown. In the example of Figure 1 only three observa-
tions are available 〈o1, o2, o3〉 but, according to the given
action model, more than three states are actually visited for
moving from a state that emits o1 to a state that emits o3.

Following, we present a detailed explanation of the sensor
model of Figure 1, and an outline of the sensor model for a
blocksworld domain with two hands.

Grid domain. An observation o in the grid example of
Figure 1 is the assignment of one observable variable locx,y
associated to the fluents {loci,j|1 ≤ i, j ≤ 5}, which repre-
sents the actual agent location in a cell (i.j).

1. When loc1,j or loc2,j (the agent is at any grey tile), the
observation of locx,y is formalized by:
P (locx,y = (i, j)|loci,j) = 0
P (locx,y = ε|loci,j) = 1

2. When loc3,j, loc4,j, or loc5,j (the agent is at any white tile),
the observation of locx,y is formalized by:
P (locx,y = (i, j)|loci,j) = 0.9
P (locx,y = ε|loci,j) = 0.1

Note that our sensor model allows for observations with
missing data (when o is locx,y = ε), and observations with
noisy data if the value of the observable variable locx,y is
different from the actual agent location given by loci,j.

Blocksworld domain with two hands. An observation
o in this domain consists of the assignment of two observ-
able variables, holdx and holdy, associated to the fluents
{holdh1,bi |bi ∈ {b1, b2}} and {holdh2,bi |bi ∈ {b1, b2}}, re-
spectively, which represent whether each hand hi is grabbing
a block bi in a state (in this example there is only two blocks,
b1 and b2). Let’s assume the emission of the two observable
variables holdx and holdy, such that h1 has higher observ-
ability than h2:

P (holdx = bi|holdh1,bi) = 0.7 P (holdx = ε|holdh1,bi) = 0.3

P (holdy = bi|holdh2,bi) = 0.6 P (holdy = ε|holdh2,bi) = 0.4

Mt τ O

Me

Planning Model Trajectory Observations

Sensor Model

Synthesis Sensing

Figure 2: Bayesian network illustrating the dependencies be-
tween the planning model, the sensor model, and the input
sequence of observations.

Observation decoding with sensor models
This section formalizes the problem of finding the most
probable state trajectory of an agent whose action model is
given by Mt = 〈F,A〉 from an observation sequence O
generated withMe = 〈Y,Φ〉.

Figure 2 shows a Bayesian network that illustrates the
relations between a given planning model Mt, a sensor
model Me, and a given input sequence of observations
O = 〈o1, o2 . . . , om〉. Synthesis refers to the generation of a
trajectory τ = 〈s0, a1, s1, . . . , an, sn〉 with the modelMt.
Sensing refers to the observation of a trajectory τ with the
sensors modeled byMe. Taking into account that both tra-
jectories and sequences of observation are time-stamped se-
quences, the Bayesian network of Figure 2 can be unfolded
into a Dynamic Bayesian Network (Figure 3) to formalize
the synthesis probability and the sensing probability func-
tions.

The synthesis probability. Given a planning model
Mt = 〈F,A〉 and a trajectory τ = 〈s0, s1, . . . , sn〉, the
synthesis probability is the probability of generating τ with
Mt:

P (τ |Mt) = P (s0)

|τ |∏
i=1

P (si|si−1,Mt), (1)

where P (s0) is the prior probability of the initial state and
P (si|si−1,Mt) denotes the probability of reaching a state
si from a previous state si−1 according toMt. This means
that if si is not reachable from si−1 executing a single action
of A, then P (si|si−1,Mt) = 0. Likewise if si is reachable
then P (si|si−1,Mt) is given by the costs of actions applica-
ble in si−1, according toMt, which we denote as A(si−1).

The sensing probability. Given a sensor model Me =
〈Y,Φ〉 and a trajectory τ = 〈s0, s1, . . . , sn〉, the sensing
probability is the likelihood of perceiving an observation se-
quence O = 〈o1, o2 . . . , om〉 with the sensor model:

P (O|τ,Me) =

|τ |∏
i=1

P (oi|si,Me), (2)

where P (oi|si,Me) denotes the probability of the assign-
ment oi for the observable variables Y given the actual

s0 . . . si−1 si . . . sn

Mt

oiMe

Figure 3: Dynamic Bayesian network that, for time-stamp
i, unfolds the relations between a trajectory, the action and
sensor models, and the observation of the trajectory.

state si. This probability is computed as P (oi|si,Me) =∏
Yi∈Y P (Yi = vi|si). For instance, going back to the ex-

ample of the blocksworld with two hands, for a state s =
{holdh1,b1, holdh2,b2}, we have that:

P (holdx = b1 ∧ holdy = b2|s) = 0.42

P (holdx = b1 ∧ holdy = ε|s) = 0.28

P (holdx = ε ∧ holdy = b2|s) = 0.18

P (holdx = ε ∧ holdy = ε|s) = 0.12

The observation decoding problem
Unlike the traditional formulation of observation decoding
in HMMs (Ghahramani 2001), we define here an observa-
tion decoding task for an incomplete input sequence of ob-
servations;i.e., the number of observations of the sequence
may be smaller than the number of states of the agent tra-
jectory. This means that the set of possible hypothesis (the
possible trajectories) may be infinite. Examples of this are
domains with reversible actions like the blocksworld (Slaney
and Thiébaux 2001). Further, we formulate the observation
decoding task leveraging a factored representation, so expo-
nential spaces of states and observations can be compactly
encoded.
Definition 2 (The observation decoding task). An obser-
vation decoding task is a triple T = 〈Mt,Me, O〉 where
Mt = 〈F,A〉 is a planning model,Me = 〈Y,Φ〉 is a sen-
sor model, andO = 〈o0, o1, . . . , om〉 is an input observation
sequence.

The solution to an observation decoding task T is the most
likely state trajectory that generates O with regard to both
input models,Mt andMe.
Definition 3 (The most likely trajectory). Given some ob-
servation sequence O, a planning modelMt, and a sensor
modelMe, the most likely trajectory τ∗ is defined as

τ∗ = arg max
τ∈T

P (O, τ |Mt,Me), (3)

where T is the set of trajectories that can be synthe-
sized with a planning model Mt and P (O, τ |Mt,Me) =
P (τ |Mt) · P (O|τ,Me) is the joint likelihood of an obser-
vation sequence O and the trajectory τ (i.e., the probability
that O and τ occur at the same time).

Example of observation decoding
Consider the grid domain of Figure 1, whose Me was
previously presented, and the observation sequence O =
〈o1, o2, o3〉, where o1 = 〈3, 1〉, o2 = 〈3, 2〉 and o3 = 〈3, 5〉
are three observations of the variable locx,y. The set F of
Mt contains the fluents loci,j for each cell, and the set A is
the four direction moves (N,S,W,E), all with cost=1.

The most likely trajectory τ that solves T =
〈Mt,Me, O〉 is the one represented with a solid line in
Figure 1, τ = 〈N,W,N,N,N,E〉, which results from exe-
cuting these six actions in the initial cell (3, 1). The joint
probability of τ and O for T , P (τ |Mt) · P (O|τ,Me), is
0.2252 · 0.254 = 0.0001977539 because two moves of τ
reach an open tile (0.25 · 0.90, where 0.25 is the transition
probability and 0.9 is the emission probability from an open
tile), and four moves of τ traverse a covered tile (0.25 ·1, be-
ing 0.25 the transition probability and 1 the emission prob-
ability of ε, the empty sensor reading). No other trajectory
consistent with T and higher probability can be found. For
instance, the probability of the shorter trajectory correspond-
ing to the four action sequence τ = 〈N,N,N,N〉 (the dotted
line in Figure 1), is P (τ |Mt) · P (O|τ,Me) = 0.2252 ·
0.0252 = 0.00003164062 < 0.0001977539 since the emis-
sion probability is 0.9 for the first and last move and 0.1 for
the two middle moves (P (ε|loc3,3) = P (ε|loc3,4) = 0.1).

Observation decoding via classical planning
Computing Equation 3 is intractable as the set of possible
trajectories T in some domains is potentially infinite. This
section explains how to effectively compute τ∗ in a single
planning episode with an optimal planner.

Considering the definitions of the synthesis and the sens-
ing probabilities (equations 1 and 2 respectively), we
rewrite equation 3 as the following product:

τ∗ = arg max
τ∈T

P (s0)

|τ |∏
i=1

P (si|si−1,Mt) · P (oi|si,Me),

(4)
Classical planners are traditionally engineered to min-

imize the cost of the actions in the solution plan (aka
total-cost). Further, classical planners deal with a fixed
initial state instead of handing a probabilistic distribution
over the set of possible initial states. With this regard, we
define a classical planning compilation that transforms the
probability maximization of Equation 4 into an equivalent
cost minimization (Equation 5) by: (1), working on the log
scale (Jiménez, Coles, and Smith 2006; Little and Thiebaux
2007) and (2), fixing each of the possible initial states:

τ∗ = argmin
τ∈T

|τ |∑
i=1

−log(P (si|si−1,Mt))− log(P (oi|si,Me)),

(5)

As in classical planning, Equation 5 assumes s0 is known
and so P (s0) = 1, which does not affect the cost minimiza-
tion. Considering different possible initial states with differ-
ent prior probabilities is however straightforward: in such

pre(transita) pre(a) ∪ {modet}
eff(transita) eff(a) ∪ {¬modet,modee}

pre(senseoi) {reachedi−1,modee}
eff(senseoi) {¬reachedi−1, reachedi}∪

{¬modee,modet}

Table 1: Transition actions extend the original actions a ∈ A
while sensing actions process observation oi ∈ O according
to the input sensor model. Their execution is interleaved.

case −log(P (s0)) is added to the cost minimization shown
in Equation 5.

Reducing observation decoding to planning
Given an observation decoding task T = 〈Mt,Me, O〉 we
build a classical planning problem P ′ = 〈F ′, A′, I ′, G′〉 s.t.
an optimal plan for P ′ induces a τ∗ trajectory that minimizes
Equation 5. Next we detail each element in the compiled
classical planning problem:

• F ′ = F ∪ {reachedi}|O|1 ∪ {disabled,modet,modee}
where:
– F are the fluents of the input planning modelMt.
– reachedi indicates that the observation oi ∈ O (1 ≤
i ≤ |O|) is processed.

– disabled is a flag indicating that an observation could
not be processed.

– modet andmodee are flags that alternatively enable the
application of transition actions and sensing actions.

• I ′ = s0 is the fixed initial state.
• G′ = {reached|O|,¬disabled}, the goal condition is that

the full sequence of input observations is successfully pro-
cessed.

• A′ = At∪Ae whereAt are the transition actions, original
actions in the input planning modelMt but extended with
a cost value representing the logarithm of the correspond-
ing transition probability. Actions in Ae are the sensing
actions, new actions to process an observation according
to the input sensing modelMe. In more detail:
– Transition actions. For each action a ∈ A there is a

transita ∈ At action. Table 1 shows that transita ex-
tends the precondition and effects of the correspond-
ing original action to update the {modet,modee} flags.
Additionally, a transita action has a cost value repre-
senting the log probability of the state transition en-
coded by that action:

cost(transita) = −log cost(a)∑
a′∈A(s) cost(a

′)
,

where A(s) ⊆ A is the subset of applicable actions at
the state where the action is applied.

– Sensing actions. For every observation oi ∈ O, Ae
contains an action senseoi , Table 1 details how a
senseoi action is built. The set Ae includes also a spe-
cial senseε action that does not require precondition

reachedi−1. This way senseε can always be applied
in the sensing mode (when modee holds), which al-
low us to deal with the fact that input sequence of ob-
servations may miss an unbound number of intermedi-
ate states. Each sensing action is associated with a set
of state-dependent costs −log(P (Yi = v|s,Me)) that
represent the log probability of each observed Yi = v,
from the current state s, and according to the input
sensing modelMe. There are two special cases treated
differently aiming efficiency: P (Yi = v|s,Me) = 1,
which is ignored because log(1) = 0, and P (Yi =
v|s,Me) = 0, which is compiled into a conditional
effect that adds the disabled fluent (which prevents G’
to be achieved).

The size of the classical planning problem that results from
the compilation depends on: (1), the number of functions in
the Φ set that determines the number of state-dependent cost
increments in a sensing action and (2), the size of the input
observation sequence (i.e., |O|), that determines the number
of sensing actions.

Theorem 4. Completeness. Any trajectory τ∗ that solves an
observation decoding task T = 〈Mt,Me, O〉 can be com-
puted with a plan π∗ that optimally solves the classical plan-
ning problem P ′ = 〈F ′, A′, I ′, G′〉.

. The only extra precondition added to the original actions is the
Boolean flag modet (to interleave the execution of a transita ∈
At action with a senseoi ∈ Ae action). On the other hand, sensing
actions do not modify the original state variables since they only
update the modet and modee flags (and the total-cost ac-
cording toMe). This means that the compilation is not introducing
further constraints for the application of the original actions.

Theorem 5. Soundness. An optimal solution plan π∗ for the
classical planning problem P ′ = 〈F ′, A′, I ′, G′〉 induces a
trajectory τ∗ that solves the observation decoding task T =
〈Mt,Me, O〉.

. According to the definition of the compilation, the execution of
a transita action produces a cost increment of the log probabil-
ity of the state transition represented by this action. The compila-
tion forces that after a transition is executed then a single sens-
ing action is executed. According to the definition of the com-
pilation, the execution of a sensing action produces a cost incre-
ment that is defined by the sum of the log probabilities of all the
(Yi = v) values that are observed from the current state. This
means that, once the full sequence of input observations is suc-
cessfully processed (i.e. the goal condition G′ that any plan π
must hold for the classical planning problem P ′) we have that
cost(π) = −log(P (τ |Mt) · P (O|τ,Me)). If the plan π is op-
timal, then the most likely trajectory is the sequence of states tra-
versed by this plan.

Illustrative example
In this section we compare the proposed approach to an
HMM through an example. This comparison highlights
some limitations of HMM that can be overcome through a
planning-based approach to observation decoding.

Cut Steak Have Soup

Pick FoodDrink

0.7: knife
0.3: ε

0.7: spoon
0.3: ε

0.7: fork
0.3: ε

0.9: cup
0.1: ε

0.1

0.2

0.2

0.3

0.3 0.5

0.4

0.2

0.3
0.5

0.3

0.1

0.5

0.3

Figure 4: A four-state HMM for the activity recognition of
eating.

The HMM for an eating activity displayed in Figure 4
is borrowed from (Kim, Helal, and Cook 2009), where
we kept the same transition probabilities and modified the
other two. The HMM has four hidden states, CutSteak,
Drink, PickFood and HaveSoup, all represented with a sin-
gle fluent, plus one state dummy that represents the initial
state of the HMM. There is one observable variable Y =
{Utensil}, such that DUtensil = {spoon, fork, knife, cup, ε}1.
Therefore, the emission of an observation of the variable
Utensil is a value within DUtensil. The emission probabil-
ities of the sensor model are shown in the figure; e.g.
ΦUtensil(cup,Drink) = 0.9, ΦUtensil(ε,Drink) = 0.1. We will
assume P (Drink = 0.5) and P (HaveSoup = 0.5).

This HMM can be represented by 〈Mt,Me〉, and
then be transformed to P ′ = 〈F ′, A′, I ′, G′〉 via
our formalism. Specifically, F ′ will comprise F =
{CutSteak,Drink,PickFood,HaveSoup} plus the neces-
sary fluents for processing the input observations and for
switching from transit to sense actions. I ′ = dummy is
the dummy state of the HMM with transition probabilities
P (Drink|I ′) = 0.5 and P (HaveSoup|I ′) = 0.5.G′ includes
a reached fluent for each input observation in O, and A′ is
the set of compiled actions. Table 2 shows an action of A′
that defines the transition from the state Drink to the state
PickFood, whose cost is −log 0.5.

Let’s assume the actual trajectory of the agent is τ =
〈Drink,PickFood,HaveSoup〉. Following, we discuss the
observation decoding for three input observation sequences.

Case 1. O1 = 〈cup, fork, spoon〉. In this case, we have
an observation for every executed step of the agent and
both the HMM and our formalism return the trajectory τ =
〈Drink,PickFood,HaveSoup〉. Table 3 shows the ground
sensing action for observation o2 = 〈fork〉 in O1.

Case 2. O2 = 〈cup, ε, spoon〉. In this case, the malfunc-
tioning of the sensor emits an empty reading after having ob-
served o = 〈cup〉. Both τ1 = 〈Drink,PickFood,HaveSoup〉
and τ2 = 〈Drink,CutSteak,HaveSoup〉 can explain O2 but

1We include ε in the variable domain because HMMs cannot
represent missing data.

pre(transitDrink−PickFood) Drink ∧modet
eff(transitDrink−PickFood) ¬Drink ∧ PickFood∧

¬modet ∧modes

Table 2: Transit action for the HMM in Figure 4.

pre(sensefork2) reachedcup1 ∧modee
eff(sensefork2) ¬reachedcup1 ∧ reachedfork2∧

¬modee ∧modet
when CutSteak (disabled)
when HaveSoup (disabled)
when Drink (disabled)
when PickFood

increase total cost − log (0.7)

Table 3: Sensing action for observation o2 = 〈fork〉 in input
sequence O1.

τ1 is the trajectory with maximum joint likelihood and both
approaches return τ1.

Case 3. O3 = 〈cup, spoon〉. An HMM requires the ob-
servation sequence and the trajectory to be synchronized,
meaning that at least there should be one observation per
state and, thus, it cannot handle this case. Our approach is
able to bypass this limitation thanks to planning, as it can
fill the gaps in the observation sequence. In other words,
HMMs can only deal with missing observations if these are
made explicit through a special token (ε) as in Case 2, while
the presented approach can deal with true null observations
(Case 3) since it assumes that there may be an unbounded
number of missing observations.

Experimental evaluation
The goal of this section is to evaluate the effectiveness of
using the sensor model for the observation decoding task.
For that purpose, we compared the performance of observa-
tion decoding with sensor models (ODS), and without sen-
sor models (ODN).ODN follows the reduction-to-planning
scheme presented in (Ramı́rez and Geffner 2010) but up-
dated to support the emission of more than one variable per
observation. It basically consists in finding the optimal plan
that complies with an observation sequence O.

Despite supporting state-dependent action costs is trivial
in state-based forward search, current off-the-shelf PDDL
planners are not able to handle this functionality. This is
due to the difficulty of computing informed goal-distance
estimates with state-dependent action costs. Recent relevant
work makes progress in this direction (Geißer, Keller, and
Mattmüller 2015; 2016) but, unfortunately, this has not yet
output a PDDL planner. In our case, planning problems
were optimally solved with an A* search guided by the
blind heuristic (h=0), using the search code of the METRIC-
FF (Hoffmann 2003) planner.

The experiment consists in providing O to ODS and
ODN and measuring the similarity of their trajectories with
the actual trajectory that induced O. For generating O, we
define a sensor model with Y observable variables which
domain of values depend on a subset of the fluents of F .

This is done by splitting Y into variables with high observ-
ability and with low observability (more details below).

The domains used in this experiment are the following:

• BLINDSPOTS: This is the domain used in Figure 1 where
|Y | = 1. The only observable variable is the location
of the agent, which is only visible from the white tiles.
For this experiment, the grids were randomly generated
as well as the initial and final positions of the agent.

• INTRUSION: This domain emulates attacks on host com-
puters (Ramı́rez and Geffner 2010; Pereira, Oren, and
Meneguzzi 2017). The attacker needs to perform a num-
ber of steps in order to steal data or vandalize a host. We
defined 10 observable variables and added a few modifi-
cations to allow different ways to accomplish the goal so
that some attack paths are more observable than others.

• BLOCKS 2H: The classic blocksworld domain with four
operators but using an additional hand. We define several
variables to emit the status of a block, and one variable
for each hand, one of them highly observable.

• OFFICE: This is a transportation domain used in (Alford,
Kuter, and Nau 2009), where a robot needs to pick up and
deliver packages in a building. The building is represented
as rooms connected by doors, and the robot may need to
go through many rooms to deliver a package. In this do-
main, we define an observable variable for each package
and make it so packages are easily traceable (high observ-
ability) in some rooms while in others not.

Table 4 shows the four domains. The values of column
H (high observability) and column L (low observability) de-
note the degree of observability applied to the Y variables of
each domain. As we can see, three different sensor models
are defined for each domain. For instance, the sensor model
100-0 of the BLINDSPOTS defines full observability for the
open tiles and null observability for the covered tiles.

We created a dataset composed of 50 trajectories for
each domain, and the input observation sequences O were
generated by applying the three sensor models of Table 4
to these trajectories. Therefore, each combination domain-
model was tested over 50 observation sequences. This
dataset and the source code for the experiments are avail-
able at https://github.com/anonsub/observation decoding.

In order to compare the similarity between two trajecto-
ries or, equivalently, between two plans, we selected the δα
version of the diversity metric presented in (Srivastava et
al. 2007). This metric interprets a plan as a bag of actions
and computes the similarity between two plans as the set-
difference between the two. Formally:

δα(πi, πj) =
|Si − Sj |
|Si|+ |Sj |

+
|Sj − Si|
|Si|+ |Sj |

where Si and Sj are the bag of actions of plans πi and πj ,
respectively. A value of 0 for this metric represents complete
similarity of plans while a value of 1 represents complete
diversity. For this experiment we computed δα(π, πS) and
δα(π, πN) where π is the plan that induced O, and πS and

Domain H L ODS ODN
100 0 0.03 0.18

BLINDSPOTS 80 20 0.08 0.20
60 40 0.11 0.17

100 0 0 0.58
INTRUSION 80 20 0.07 0.18

60 40 0.13 0.14
100 0 0 0.34

BLOCKS 2H 80 20 0.05 0.27
60 40 0.07 0.26

100 0 0 0.58
OFFICE 80 20 0.23 0.38

60 40 0.16 0.23

Table 4: Comparison between ODS and ODN : domains,
observability degree for H fluents, observability degree for
L fluents, average δα(π, πS), average δα(π, πN).

πN are the plans corresponding to the trajectories inferred
by ODS and ODN , respectively.

The obtained results are shown in Table 4. The fig-
ures in columns ODS and ODN are the average values of
δα(π, πS), and δα(π, πN), respectively, over the 50 sam-
ples. We can observe that the average diversity of ODN

is always higher than ODS for every combination domain-
model, meaning that ODS decodes trajectories more accu-
rately. It is also noticeable that the difference of diversity be-
tween both approaches narrows down as we get closer to a
uniform distribution that sets the same degree of observabil-
ity for all the domain objects. This seems reasonable since
not considering the sensor model is equivalent to assuming
a uniform distribution of observations where H=L.

It is also worth noting the significant diversity drop of
ODN from sensor model 100-0 to 80-20 in the INTRUSION
domain. This happens because only two solution paths ex-
ist for these problems and increasing the low observability
degree from 0 to 20 uncovers some variables that identify
almost unambiguously the solution path.

In conclusion, exploiting the absence of observable in-
formation is as valuable as using the existing observations
for predicting an agent trajectory, and this is what the ODS

model brings.

Beyond plan and goal recognition
Observation decoding with sensor models may be beneficial
to planning-related recognition tasks. Our formalism can be
plugged directly into a Goal Recognition problem (Ramı́rez
and Geffner 2010) and other derived problems offering two
main advantages: (1) the exploitation of a sensor model to
build more accurate estimates about the acting agent, and (2)
support for observations consisting of multiple observable
variables.

The purpose of this section is to shed some light on the
generalization of recognition tasks and provide a single task
definition that allows recognizing any aspect of the acting
agent, namely goals, initial states, intermediate states, plans
or any combination of these. In order to present this new
view of a recognition task, we need first to define the likeli-

hood of an observation sequence:

P (O|Mt,Me) =
∑
τ

P (O, τ |Mt,Me)

≈ max
τ

P (O, τ |Mt,Me)

This likelihood is a generating probability as it defines the
probability of generating O with the models Mt and Me.
Its exact computation takes into account every τ that can
emit O, but a common approximation is to assume that this
probability is dominated by its largest term. Note that this
approximation can be computed using the cost of the plan
inferred by our observation decoding task.

A recognition task is about finding the most likely element
among a set of hypothesis. For example, given a set of possi-
ble goals of an agent, Goal Recognition seeks to identify the
real goal the agent is pursuing. In our notion of recognition
task, we define the set of hypothesisH as a set of incomplete
trajectories identical in shape to an observation sequence.

Definition 6 (The recognition task). A recognition task is a
triple T = 〈Mt,Me,H〉 whereMt = 〈F,A〉 is a planning
model, Me = 〈Y,Φ〉 is a sensor model, and H is a set of
hypothesis.

The solution to a recognition task T is the hypothesisH ∈
H with maximum likelihood.

H∗ = arg max
H∈H

P (H|Mt,Me) (6)

For instance, the goal recognition task solved in (Ramı́rez
and Geffner 2010), where the input data are the initial state
I , a plan observation 〈o1, . . . , on〉, and a set of goals G,
amounts to finding the most likely hypothesis among the set
H = {〈I, o1, . . . , on, G〉|G ∈ G} (H are incomplete trajec-
tories that only differ in G). In other words, we solve |H|
observation decoding tasks to find the last observation (G)
that makes an observation sequence H more likely.

Our definition of recognition task broadens the applica-
tion of the reduction-to-planning approach to a wider range
of features of the acting agents. This view allows us to de-
fine an arbitrary number of hypothesis where the differences
may lie in any state or action.

Conclusions
We have formulated a probabilistic sensor model to allow
an observer infer helpful information about the acting agent
from the partial observations emitted by sensors. The results
show that the agent trajectory is more accurately computed
when the sensor model is taken into account. The lesson
learned from this work is that important gains are obtain-
able when sensor models exploit the non-observable data as
well. Furthermore, the joint likelihood underpinning the ob-
servation decoding task lays the foundations for defining a
generalized recognition task able to identify any feature of
the agent behaviour (namely goals, initial states, intermedi-
ate states, plans or any combination of these).

Acknowledgments
This work is supported by the Spanish MINECO project
TIN2017-88476-C2-1-R. D. Aineto is partially supported by
the FPU16/03184 and S. Jiménez by the RYC15/18009.

References
Aineto, D.; Jiménez, S.; Onaindia, E.; and Ramı́rez, M.
2019. Model Recognition as Planning. In 30th Int. Conf.
on Automated Planning and Scheduling, ICAPS, 13–21.
Aineto, D.; Jiménez, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence Journal 275:104–137.
Alford, R. W.; Kuter, U.; and Nau, D. 2009. Translating
HTNs to PDDL: A Small Amount of Domain Knowledge
Can Go a Long Way. In 21st International Joint Conference
on Artificial Intelligence, IJCAI, 1629–1634.
Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349–402.
Bonet, B.; Palacios, H.; and Geffner, H. 2009. Automatic
Derivation of Memoryless Policies and Finite-State Con-
trollers Using Classical Planners. In 19th International Con-
ference on Automated Planning and Scheduling, ICAPS.
Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic
derivation of finite-state machines for behavior control. In
24th AAAI Conference on Artificial Intelligence.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review 28(02):195–213.
Freedman, R. G.; Jung, H.; and Zilberstein, S. 2014. Plan
and activity recognition from a topic modeling perspective.
In 24th International Conference on Automated Planning
and Scheduling, ICAPS.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete
relaxations for planning with state-dependent action costs.
In 24th International Joint Conference on Artificial Intelli-
gence, IJCAI, 1573–1579.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstractions
for planning with state-dependent action costs. In 26th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS, 140–148.
Ghahramani, Z. 2001. An Introduction to Hidden Markov
Models and Bayesian Networks. Journal of Pattern Recog-
nition and Artificial Intelligence 15(1):9–42.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating ”Ignoring Delete Lists” to Numeric State Variables. J.
Artif. Intell. Res. 20:291–341.
Jiménez, S.; Coles, A.; and Smith, A. 2006. Planning in
probabilistic domains using a deterministic numeric plan-
ner. In 25th Workshop of the UK Planning and Scheduling
Special Interest Group.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial Intelligence 101(1-2):99–134.

Keren, S.; Gal, A.; and Karpas, E. 2014. Goal recogni-
tion design. In 24th International Conference on Automated
Planning and Scheduling, ICAPS, 154–162.
Keren, S.; Gal, A.; and Karpas, E. 2019. Goal Recognition
Design in Deterministic Environments. Journal of Artificial
Intelligence Research 65:209–269.
Kim, E.; Helal, S.; and Cook, D. 2009. Human Activity
Recognition and Pattern Discovery. IEEE Pervasive Com-
puting 9(1):48–53.
Kucera, J., and Barták, R. 2018. LOUGA: learning planning
operators using genetic algorithms. In Pacific Rim Knowl-
edge Acquisition Workshop, PKAW-18, 124–138.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
unified framework for planning in adversarial and coopera-
tive environments. In AAAI Conference on AI, 2479–2487.
Little, I., and Thiebaux, S. 2007. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past, Present and
Future.
Nazerfard, E., and Cook, D. J. 2015. CRAFFT: an activity
prediction model based on bayesian networks. J. Ambient
Intelligence and Humanized Computing 6(2):193–205.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In 31st AAAI Confer-
ence on Artificial Intelligence. AAAI Press.
Pozanco, A.; E.-Martı́n, Y.; Fernández, S.; and Borrajo, D.
2018. Counterplanning using goal recognition and land-
marks. In 27th International Joint Conference on Artificial
Intelligence, IJCAI, 4808–4814.
Ramı́rez, M., and Geffner, H. 2009. Plan Recognition as
Planning. In 21th International Joint conference on Artifical
Intelligence, IJCAI, 1778–1783. AAAI Press.
Ramı́rez, M., and Geffner, H. 2010. Probabilistic Plan
Recognition Using Off-the-Shelf Classical Planners. In 24th
AAAI National Conference on Artificial Intelligence.
Ramı́rez, M., and Geffner, H. 2011. Goal recognition over
pomdps: Inferring the intention of a POMDP agent. In 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI, 2009–2014.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in neural information process-
ing systems, 2164–2172.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence 125(1-2):119–153.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In 25th International Joint Con-
ference on Artificial Intelligence, IJCAI, 3258–3264.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain independent
approaches for finding diverse plans. In 20th Int. Joint Con-
ference on Artificial Intelligence, IJCAI, 2016–2022.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence 171(2-3):107–143.
Yu, S. 2016. Hidden Semi-Markov Models: Theory, Algo-
rithms and Applications. Boston: Elsevier.

