
Unsupervised Classification of Planning Instances

Javier Segovia
Information and Communication Technologies

Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

javier.segovia@upf.edu

Sergio Jiménez
Computing and Information Systems

University of Melbourne
Parkville, Victoria 3010, Australia

sjimenez@unimelb.edu.au

Anders Jonsson
Information and Communication Technologies

Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

anders.jonsson@upf.edu

Abstract

In this paper we introduce a novel approach for unsuper-
vised classification of planning instances based on the recent
formalism of planning programs. Our approach is inspired
by structured prediction in machine learning, which aims at
predicting structured information about a given input rather
than a scalar value. In our case, each input is an unlabelled
classical planning instance, and the associated structured in-
formation is the planning program that solves the instance.
We describe a method that takes as input a set of planning
instances and outputs a set of planning programs, classify-
ing each instance according to the program that solves it.
Our results show that automated planning can be successfully
used to solve structured unsupervised classification tasks, and
invites further exploration of the connection between auto-
mated planning and structured prediction.

Introduction

Machine Learning (ML) tasks can be broadly classified into
two categories according to the available learning source:

• Supervised learning. The learning source is a set of in-
puts labeled with desired outputs. The learning task is to
compute a function that maps inputs into desired outputs.

• Unsupervised learning. The learning source is a set of
inputs, but no labels are available. The learning task is to
identify structural patterns for the given set of inputs.

Each input typically represents an object encoded as an as-
signment of values to a finite set of features. Each output is
a scalar that can be either an integer (in the case of classifi-
cation tasks) or a real value (in the case of regression tasks).

The demand of applications with complex perception
abilities, such as the interpretation of natural language or
image scenes, is pushing research in ML towards more ex-
pressive representations of learning tasks that relax stan-
dard assumptions. A prominent example is structured pre-
diction (Bakir et al. 2007) in which the outputs represent

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

I1

G1

I2

G2 G3

I3

(a)

0. dec(x)
1. goto(0,!(x = xG))
2. dec(y)
3. goto(2,!(y = yG))
4. end

(b)

Figure 1: (a) Three different instances of grid navigation; (b)
a planning program Π1 that solves all of them.

more complex structural information about inputs, informa-
tion whose size can even be exponential in the input size.

Our work is particularly inspired by two recent ap-
proaches that synthesize programs in order to output struc-
tured information about inputs (Lake, Salakhutdinov, and
Tenenbaum 2015; Ellis, Solar-Lezama, and Tenenbaum
2015). Programs are a natural knowledge representation for
many domains, are easy to interpret by humans, and can
compactly express relatively complex operations on inputs.

In this paper we ask the following question: given an
unlabelled input set of planning instances, is it possible to
classify the planning instances according to some criterion?
Since planning instances include actions, it makes sense to
classify them according to behaviors rather than feature val-
ues. Similar to existing approaches for structured predic-
tion, our approach is to automatically synthesize programs
that generate behaviors, taking advantage of the recent for-
malism of planning programs (Jiménez and Jonsson 2015;
Segovia-Aguas, Jiménez, and Jonsson 2016a).

From an ML perspective, our approach can be thought of
as treating the goal condition of each planning instance as
the output of an unknown planning program applied to the
initial state. The aim then becomes to automatically synthe-
size a planning program that outputs the goal (i.e. solves the
instance), and cluster instances that are solved by the same
program (i.e. that display the same behavior).

As an illustrating example, consider the problem of

Proceedings of the Twenty-Seventh International Conference on Automated Planning and Scheduling (ICAPS 2017)

452

navigating through a grid from an initial position to a
goal position. Figure 1(a) represents three different plan-
ning instances of this type. These instances can all be
represented using the same variables and actions: vari-
ables x and y that represent the current position, vari-
ables xG and yG that represent the goal position, and ac-
tions {dec(x),dec(y),inc(x),inc(y)} that decre-
ment/increment the value of x or y. Although these three in-
stances have different initial states and goals, they are solved
by the planning program Π1 in Figure 1(b): independent of
the grid size decrement x until reaching the goal column,
and decrement y until reaching the goal row. Note that we
could solve these instances using three different planning
programs, in which case they would no longer be consid-
ered to display the same behavior. This illustrates that, to
classify the set of input instances, we should attempt to use
as few programs as possible.

Our main contribution is to show that classical planning
offers an alternative way to synthesize programs for struc-
tured prediction. On one hand, planning programs are more
expressive than the programs synthesized in previous ap-
proaches. Ellis, Solar-Lezama, and Tenenbaum (2015), for
example, only consider programs generated by an acyclic
grammar, a restriction not shared by planning programs. On
the other hand, the planning programs we consider here are
deterministic rather than probabilistic, which limits their ap-
plicability when inputs are noisy.

The rest of the paper is organized as follows. The back-
ground section introduces existing notation and concepts
that we exploit in our work. We then describe our approach
for unsupervised classification of planning instances. In the
following section we show how to model noise-free unsuper-
vised classification tasks as planning problems. After that
we present the results from empirical experiments, describe
how our approach is related to existing approaches in the lit-
erature, and conclude with a discussion about future work.

Background
This section defines the planning models that we rely on in
this work: classical planning with conditional effects, that
we use to model the inputs of the unsupervised classification
task addressed in this paper, and generalized planning, that
we use to model sets of planning instances whose solutions
share a common structure.

Classical Planning with Conditional Effects

Conditional effects make it possible to repeatedly refer to
the same action even when the precise effects depend on the
current state. Conditional effects are important components
of generalized plans because, as shown in conformant plan-
ning (Palacios and Geffner 2009), they can adapt the execu-
tion of a sequence of actions to different initial states.

We use F to denote a set of propositional variables or
fluents describing a state. A literal l is a valuation of a fluent
f ∈ F , i.e. l = f or l = ¬f . A set of literals L on F
represents a partial assignment of values to fluents (WLOG
we assume that L does not assign conflicting values to any
fluent). We use L(F) to denote the set of all literal sets on
F , i.e. all partial assignments of values to fluents.

Given L, let ¬L = {¬l : l ∈ L} be the complement of L.
A state s is a set of literals such that |s| = |F |, i.e. a total
assignment of values to fluents. The number of states is then
2|F |. Explicitly including negative literals ¬f in states sim-
plifies subsequent definitions, but we often abuse notation
by defining a state s only in terms of the fluents that are true
in s, as is common in STRIPS planning.

We consider the fragment of classical planning with con-
ditional effects that includes negative conditions and goals.
Under this formalism, a classical planning frame is a tuple
Φ = 〈F,A〉, where F is a set of fluents and A is a set of
actions with conditional effects. Each action a ∈ A has a
set of literals pre(a) ∈ L(F) called the precondition and
a set of conditional effects cond(a). Each conditional ef-
fect C � E ∈ cond(a) is composed of two sets of literals
C ∈ L(F) (the condition) and E ∈ L(F) (the effect).

An action a ∈ A is applicable in state s if and only if
pre(a) ⊆ s, and the resulting set of triggered effects is

eff(s, a) =
⋃

C�E∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of apply-
ing a in s is a new state θ(s, a) = (s\¬eff(s, a))∪eff(s, a).

Given a planning frame Φ = 〈F,A〉, a classical planning
instance is a tuple P = 〈F,A, I,G〉, where I ∈ L(F) is an
initial state (i.e. |I| = |F |) and G ∈ L(F) is a goal condi-
tion. A plan for P is an action sequence π = 〈a1, . . . , an〉
that induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 =
I and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1

and generates the successor state si = θ(si−1, ai). The plan
π solves P if and only if G ⊆ sn, i.e. if the goal condition is
satisfied following the application of π in I .

In our classification tasks the inputs are planning in-
stances associated with a given planning frame Φ. Given a
planning frame Φ = 〈F,A〉, we use Γ(Φ) = {(F,A, I,G) :
I ∈ L(F), |I| = |F |, G ∈ L(F)} to denote the set of all
planning instances that can be instantiated from Φ by defin-
ing an initial state I and a goal condition G.

Generalized Planning

Our definition of the generalized planning problem is based
on that of Hu and De Giacomo (Hu and De Giacomo 2011),
who define a generalized planning problem as a finite set of
multiple individual planning instances P = {P1, . . . , PT }
that share the same observations and actions. Although ac-
tions are shared, each action can have different interpreta-
tions in different states due to conditional effects.

A solution Π to a generalized planning problem P is a
generalized plan that solves every individual instance Pt,
1 ≤ t ≤ T . In the literature, generalized plans have diverse
forms that range from DS-planners (Winner and Veloso
2003) and generalized polices (Martı́n and Geffner 2004)
to finite state machines (Bonet, Palacios, and Geffner 2010;
Segovia-Aguas, Jiménez, and Jonsson 2016b). Each of these
representations has its own syntax and semantics but they all
allow non-sequential execution flow to solve planning in-
stances with different initial states and goals.

453

In this work we restrict the above definition for gener-
alized planning in two ways: 1) states are fully observ-
able, so observations are equivalent to states; and 2) each
action has the same (conditional) effects in each individ-
ual problem. As a consequence, the individual instances
P1 = 〈F,A, I1, G1〉, . . . , PT = 〈F,A, IT , GT 〉 are classi-
cal planning instances that share the same planning frame
Φ = 〈F,A〉 and differ only in the initial state and goal,
i.e. each individual instance Pt belongs to the set Γ(Φ).

Our definition of generalized planning problems is re-
lated to previous works on planning and learning that ex-
tract and reuse general knowledge from different instances
of the same domain (Fern, Khardon, and Tadepalli 2011;
Jiménez et al. 2012). However, we impose a stronger re-
striction on the individual planning instances since they do
not only share the set of predicates but also the fluents, im-
plying that they have the same state space. In addition, we
assume that the solutions to generalized plans are in the form
of planning programs, as defined in the next section.

Planning Programs

A planning program is a sequence of planning actions en-
hanced with goto instructions, i.e. conditional constructs
for jumping to arbitrary locations of the program (Jiménez
and Jonsson 2015; Segovia-Aguas, Jiménez, and Jonsson
2016a).

Given a planning frame Φ = 〈F,A〉, a basic planning
program is a sequence of instructions Π = 〈w0, . . . , wn〉.
Each instruction wi, 0 ≤ i ≤ n, is associated with a program
line i and is drawn from the set of instructions I = A∪Igo∪
{end}, where Igo = { goto(i′, !f) : 0 ≤ i′ ≤ n, f ∈ F} is
the set of goto instructions.

In other words, each instruction is either a planning ac-
tion a ∈ A, a goto instruction goto(i′, !f) or a termination
instruction end. A termination instruction acts as an explicit
marker that program execution should end, similar to a re-
turn statement in programming.

The execution model for a planning program Π consists of
a program state (s, i), i.e. a pair of a planning state s ⊆ F
and a program counter 0 ≤ i ≤ n whose value is the current
program line. Given a program state (s, i), the execution of
instruction wi on line i is defined as follows:

• If wi ∈ A, the new program state is (s′, i+1), where s′ =
θ(s, wi) is the result of applying action wi in planning
state s, and the program counter is incremented.

• If wi = goto(i′, !f), the new program state becomes
(s, i+ 1) if f ∈ s, and (s, i′) otherwise.

• If wi = end, execution terminates.

To execute a planning program Π on a planning problem
P = 〈F,A, I,G〉, the initial program state is set to (I, 0),
i.e. the initial state of P and program line 0. The program
Π solves P if and only if execution terminates and the goal
condition holds in the resulting program state (s, i), i.e. G ⊆
s ∧ wi = end.

Executing Π on P can fail for three reasons:

1. Execution terminates in program state (s, i) but the goal
condition does not hold, i.e. G 	⊆ s ∧ wi = end.

2. When executing an action wi ∈ A in program state (s, i),
the precondition of wi does not hold, i.e. pre(wi) 	⊆ s.

3. Execution enters an infinite loop that never reaches an end
instruction.

This execution model is deterministic and hence a planning
program can be viewed as a form of compact reactive plan
for the family of planning problems defined by the planning
frame Φ = 〈F,A〉. Given a generalized planning problem
P = {P1, . . . , PT } defined on a common planning frame
Φ = 〈F,A〉, a planning program Π is a generalized plan
that solves P if and only if Π solves each planning instance
Pt, 1 ≤ t ≤ T .

Jiménez and Jonsson (2015) introduced a compilation
from generalized planning to classical planning for comput-
ing planning programs. Briefly, given a generalized plan-
ning problem P = {P1, . . . , PT } and a number of program
lines n, the compilation outputs a classical planning instance
Pn = 〈Fn, An, In, Gn〉. Pn is defined such that any plan π
that solves Pn simultaneously programs the instructions of
a planning program Π and simulates the execution of Π on
each individual planning instance Pt, 1 ≤ t ≤ T , thus vali-
dating that Π solves P .

The compilation defines two new sets of fluents:

• Fpc = {pci : 0 ≤ i ≤ n}, the fluents that encode the
program counter.

• Fins = {insi,w : 0 ≤ i ≤ n,w ∈ A∪Igo∪{nil, end}}, the
fluents that encode the instructions on different program
lines, where nil denotes an empty line.

Formally the components of Pn are defined as:

• Fn = F ∪ Fpc ∪ Fins ∪ {done},

• An = {P(ai),R(ai) : a ∈ A, 0 ≤ i < n}
∪ {P(gofi,i′),R(gofi,i′) : goto(i′, !f) ∈ Igo, 0 ≤ i < n}
∪ {P(endt,i),R(endt,i) : 1 ≤ t ≤ T, 0 < i ≤ n},

• In = I ∪ {insi,nil : 0 ≤ i ≤ n} ∪ {pc0},
• Gn = {done}.

Here, ai is an action that simulates instruction a ∈ A on line
i, gofi,i′ is an action that simulates instruction goto(i′, !f) ∈
Igo on line i, and endt,i is an action that simulates the termi-
nation instruction end on line i for the individual instance
Pt,1 ≤ t ≤ T . The precondition of endt,i verifies that the
goal condition Gt of Pt is satisfied, and the effect is to reset
the program state to (It+1, 0), if t < T , or to add the fluent
done required in the goal condition, if t = T . Each such
action α has two versions: P (α), for programming α, and
R(α), for repeating the execution of α, and the action set
An includes both versions.

The compiled planning instance Pn can be solved using
an off-the-shelf classical planner, and the resulting solution
plan π can be used to extract a planning program Π that
provably solves the generalized planning problem P . A clas-
sical planner detects all three failure conditions described
above, making it particularly suitable for computing plan-
ning programs.

454

Classification of Planning Instances

In this section we describe our approach to classification of
planning instances. The input is a set of unlabelled planning
instances E = {P1, . . . , PT }. Just as in the definition of
generalized planning, we assume that each input instance Pt,
1 ≤ t ≤ T , is instantiated from a common planning frame
Φ = 〈F,A〉, i.e. Pt ∈ Γ(Φ).

Unlike generalized planning, the aim here is not to learn
a single generalized plan for solving the instances in E.
Rather, we want to classify the instances in E according to
some criterion and, since the input instances in E are unla-
belled, this is an unsupervised classification task.

The most common approach to unsupervised classifica-
tion is clustering. Clustering addresses the classification of
a set of unlabelled examples in such a way that examples
within the same class (cluster) are more similar to each other
than to those in other classes (clusters).

Our approach to unsupervised classification of planning
instances is to consider two different planning instances as
similar if their solutions share a common structure, i.e. both
instances can be solved using the same generalized plan. In
other words, a given planning instance belongs to a class
if the generalized plan, that acts as the class prototype (Liu,
Jiang, and Kot 2009), solves that instance. For instance, Fig-
ure 1(b) shows the program Π1 that solves the three planning
instances illustrated in Figure 1(a) and represents the proto-
type for this cluster of different planning instances.

Formally, the unsupervised classification task we consider
in the paper is defined by a tuple 〈Φ, E,m〉, where
• Φ = 〈F,A〉 is a classical planning frame.
• E = {P1, . . . , PT } is a finite set of unlabelled examples

drawn from Φ, i.e. Pt ∈ Γ(Φ), 1 ≤ t ≤ T .
• m is the number of clusters, implicitly defining a set of

class labels C = {c1, . . . , cm}.
A model for the unsupervised classification task 〈Φ, E,m〉
is defined as a tuple 〈S, f〉, where:
• S = {Π1, . . . ,Πm} is set of generalized plans, one for

each class label.
• f : E → C is a partial function on Γ(Φ) that assigns a

class label f(Pt) ∈ C to each input instance Pt ∈ E.
The model 〈S, f〉 is valid if and only if, for each class la-
bel cj ∈ C and each input instance Pt ∈ E such that
f(Pt) = cj , the corresponding generalized plan Πj solves
Pt. Another way to put this is that a valid model makes no
classification errors with respect to the input instances in E.

Intuitively, the function f defines a partition of the in-
put instances into clusters, and each cluster corresponds to a
generalized planning problem Pj , 1 ≤ j ≤ m, whose plan-
ning instances are the input examples mapped to that cluster
and whose solution is given by the generalized plan Πj .

We can now define two different tasks associated with un-
supervised classification of planning instances:

1. Given an unsupervised classification task 〈Φ, E,m〉,
compute a valid model 〈S, f〉.

2. Given an unsupervised classification task 〈Φ, E,m〉, a
model 〈S, f〉 and a planning instance P ∈ Γ(Φ) \ E

Π0: 0. choose(Π1|Π2) Π2: 0. inc(x)
1. end 1. goto(0,!(x=n))

2. inc(y)
3. goto(2,!(y=n))
4. end

Figure 2: An unsupervised classification model with two
clusters of planning instances represented as a planning pro-
gram with a choice instruction choose(Π1|Π2), with Π1

given in Figure 1(b).

(i.e. instantiated from Φ but not included among the in-
puts), classify P by determining its class label.

This second task can also be understood as plan recog-
nition (Ramırez and Geffner 2010) using plan libraries in
the form of generalized plans and where inputs are not se-
quences of observations but (initial state, goal) pairs. In
what follows we describe our approach for carrying out each
of these two tasks.

Computing Classification Models

This section shows how to compute a valid model 〈S, f〉 for
a given unsupervised classification task 〈Φ, E,m〉.

Our approach is extending the planning program formal-
ism and the compilation described in the previous section.
In more detail we represent both S (the set of planning pro-
grams) and f (the mapping from input instances to class la-
bels) as follows:

• We extend the instruction set I with a choice instruction
defined as choose(Π1| · · · |Πm), where each Πj , 1 ≤ j ≤
m, is a planning program in S (possibly yet to be pro-
grammed).

• We represent multiple planning programs Π1, . . . ,Πm

(plus an additional program Π0 that only contains the
choice instruction, cf. Figure 2). Representing multiple
planning programs is akin to using procedures and defin-
ing a set of new call instructions that allow programs to
call other programs (Segovia-Aguas, Jiménez, and Jon-
sson 2016a). In this case however, it is not necessary
to explicitly include call instructions since the choice in-
struction is the only instruction that chooses among the
planning programs in S.

Figure 2 shows a set of planning programs that represent
an unsupervised classification model with two class labels.
The first cluster corresponds to the program Π1 shown in
Figure 1(b), acting as the prototype for the cluster of plan-
ning tasks in Figure 1(a), and the second cluster corresponds
to the program Π2, acting as the prototype for the cluster of
planning instances that move the agent towards the top-right
corner of an n×n grid. (We remark that we can use a single
planning frame to represent navigation instances with differ-
ent grid sizes by including fluents xmax and ymax express-
ing the maximum values of x and y).

The execution model for planning programs with a choice
instruction choose(Π1| · · · |Πm) behaves in the same way
as before for all other types of instructions (including the
conditions for termination, success and failure). The only

455

behaviour that has to be redefined is the execution model of
the choice instruction in program state (s, i):
• If wi = choose(Π1| · · · |Πm), its execution actively

chooses a planning program among Π1, . . . ,Πm to pro-
gram and execute, setting the new program state to (s, 0)

Our new compilation takes as input an unsupervised clas-
sification task 〈Φ, E,m〉 and a number of program lines n
and outputs a single classical planning instance Pm,n =
{Fm,n, Am,n, Im,n, Gm,n}. Since the compilation shares
many similarities with the existing compilation described in
the previous section, we only describe the relevant differ-
ences here:
• The fluent set Fm,n defines m + 1 planning programs

Π0,Π1, . . . ,Πm with n lines. This is done by introducing
a copy fj of each fluent f ∈ Fpc ∪ Fins for each plan-
ning program Πj , 0 ≤ j ≤ m (Segovia-Aguas, Jiménez,
and Jonsson 2016a). As a result, a program state (s, i, j)
keeps track not only of the current line i, 0 ≤ i ≤ n, but
also of the current planning program Πj , 0 ≤ j ≤ m.

• Likewise, for each action α that simulates an instruction,
we make a copy αj for each Πj , 0 ≤ j ≤ m, and the
action set Am,n includes P (αj) and R(αj) for program-
ming and repeating the execution of αj .

• An end action endt,i,j , t < T , resets the program state
to (It+1, 0, 0), i.e. execution restarts for the next input in-
stance Pt+1 on line 0 of the “choice” program Π0.

• Am,n also includes m actions choosej , 1 ≤ j ≤ m,
for simulating the execution of the choice instruction
choose(Π1| · · · |Πm), each actively choosing one of the
programs among Π1, . . . ,Πm to execute. Formally, the
action choosej is defined as

pre(choosej) = {pc0,0},
cond(choosej) = {¬pc0,0, pc0,j}.

• The initial state Im,n is defined such that the program
Π0 equals that in Figure 2, except that the choice is be-
tween Π1, . . . ,Πm, while the lines of the planning pro-
grams Π1, . . . ,Πm are initially empty. The program state
is initialized to (I1, 0, 0), i.e. the initial state of the input
instance P1 and line 0 of the planning program Π0.

• The goal condition is defined as Gm,n = {done} as be-
fore.

Lemma 1. Any plan π that solves Pm,n corresponds to a
valid model 〈S, f〉 for the unsupervised classification task
〈Φ, E,m〉.
Proof sketch. To solve Pm,n the plan π has to simulate the
choice instruction for each input instance Pt, 1 ≤ t ≤ T ,
actively choosing a planning program among Π1, . . . ,Πm.
This active choice corresponds exactly to the mapping f
from input instances to class labels. In addition, for each
input Pt, π has to program the instructions (if not yet pro-
grammed) of the chosen planning program Πj , 1 ≤ j ≤ m,
and then simulate the execution of Πj on Pt. For π to solve
Pm,n, this simulated execution has to successfully validate
that Πj solves Pt. Hence S = {Π1, . . . ,Πm} satisfies the
property required for the model 〈S, f〉 to be valid.

Determining Class Labels

Once we have access to a valid model 〈S, f〉 for an unsu-
pervised classification task 〈Φ, E,m〉, a related task is to
classify planning instances not in E. Consider a planning
instance P = 〈F,A, I,G〉 ∈ Γ(Φ)\E, i.e. instantiated from
the same planning frame Φ as the input instances in E, but
not part of the input.

To classify P , for each planning program Πj ∈ S such
that 1 ≤ j ≤ m, we execute Πj on P to verify whether Πj

solves P . If Πj does solve P , we classify P using class label
Cj .

In general, however, there is no guarantee that there exists
a planning program in S that solves P . In this case we have
a couple of choices:

• For each Πj ∈ S , we can record the final program state
(s, i) such that wi = end, and determine how close s is
to solving P . We can estimate the distance from s to G,
e.g. counting the number of goal conditions in G satisfied
by s, and classify P according to the program in S that
minimizes this distance.

• We can compute a new planning program that solves P ,
and extend 〈S, f〉 with this new planning program and the
associated class label. In other words, we do not consider
that the new instance belongs to any of the existing classes
so we define a new class, and assign it to P .

Unsupervised Classification as Planning

Supervised classification can be modeled as a generalized
planning task (Lotinac et al. 2016). Likewise a noise-free
decision tree can be seen as a particular contingent plan (Al-
bore, Palacios, and Geffner 2009) whose internal nodes con-
tain only sensing actions and its leaf nodes contain actions
that transform the state assigning a class label to it. The goal
of this particular contingent planning task is assigning the
desired class label to each possible initial state.

Here we show that a similar approach can be defined for
unsupervised classification, as an alternative to the type of
unsupervised classification task that we present in previous
sections. The aim of this section is not to be competitive
with state-of-the-art ML techniques when solving unsuper-
vised classification tasks but to go deep in the connection of
the automated planning and ML models.

A noise-free unsupervised classification task is the task of
computing a noise-free classifier that chooses a label from a
set of class labels C = {c1, . . . , cm} for a given set of un-
labelled examples {e1, . . . , eT }. Each input et, 1 ≤ t ≤ T
is now an assignment of values to a finite set of features
X = {x1, . . . , xl}, where each variable xk, 1 ≤ k ≤ l, has
an associated finite domain D(xk). This unsupervised clas-
sification task can be modeled as a generalized planning task
P = {P1, . . . , PT } such that each individual planning tasks
Pt = 〈F,A, It, Gt〉, 1 ≤ t ≤ T , models the classification of
the tth example:

• F comprises the fluents required for representing the
learning examples, their labels and an extra fluent
(classified) that indicates whether or not a given example
has already received a class label.

456

• A contains the actions necessary to label a given exam-
ple with a class label in C. For instance, in a two-
class unsupervised classification, C = {class1, class2}
and A = {setClass1, setClass2}. While the setClass1 ac-
tion makes the fluent class1 true, action setClass2 makes
the fluent class2 true, and both actions make the fluent
classified true to prevent the execution of these actions
more than once for the same example. Formally, action
setClassc is defined as follows:

pre(setClassc) ={¬classified},
cond(setClassc) ={∅� {classified, classc}}.

• It contains the fluents that describe the tth example while
Gt = {classified} requires that the example has been la-
beled.

According to this formulation, the solution Π to a general-
ized planning problem P = {P1, . . . , PT } that models an
unsupervised learning task of this type is a noise-free clas-
sifier for the T unlabelled learning examples if and only if
Π assigns every class cj ∈ C, 1 ≤ j ≤ m, to at least one
example et, 1 ≤ t ≤ T . This generalized planning task can
be compiled into a classical planning instance (Jiménez and
Jonsson 2015; Segovia-Aguas, Jiménez, and Jonsson 2016a)
adding a new goal condition to the resulting planning in-
stance that forces Π to assign every class label to at least
one input example. For instance, in a two-class unsuper-
vised learning task, fluents class1 and class2 are also goals
of the planning instance resulting from the compilation.

This modelling of traditional ML tasks as classical plan-
ning instances is straightforward when examples are de-
scribed using logic, like in the classic Michalski’s train clas-
sification task (Michalski, Carbonell, and Mitchell 2013).
However, we can also model classification tasks for which
the features used to describe learning examples have finite
domains. In this case we assume that the fluents F are in-
stantiated from a set of predicates Ψ and a set of objects Ω,
and that there exists a predicate assign(v, x) ∈ Ψ and that Ω
is partitioned into two sets Ωv (the variable objects) and Ωx

(the value objects). Intuitively, a fluent assign(v, x), v ∈ Ωv

and x ∈ Ωx, is true if and only if x is the value currently as-
signed to the variable v. A given variable represents exactly
one value at a time, so for a given v, fluents assign(v, x),
x ∈ Ωx, are invariants.

We show here a simple unsupervised classification task
that can be modeled in this way. The task is a two-cluster
classification of examples that correspond to the different
value combinations of three Boolean variables, x1, x2 and y.
More precisely, there is a total of eight examples, four corre-
sponding to the variable values of the formula y = x1 → x2

(the first cluster) and the other four corresponding to the for-
mula y = x2 → x1 (the second cluster). Figure 3 shows a
program Π that solves this unsupervised classification task.

Even though there are different ways of clustering the
examples, a classical planner would prefer compact cluster
models, like the one shown in Figure 3, i.e. that requires a
small number of program lines. The fluent y = ¬x1 ∧ x2

that appears in the goto instruction (line 0) represents a de-
rived fluent that holds in all the states for which the encoded
formula is satisfied.

Π: 0. goto(3,!(y = ¬x1 ∧ x2))
1. setClass1
2. end
3. setClass2
4. end

Figure 3: Example planning program for the two-cluster
classification task of learning examples that correspond to
the logic formulae y = x1 → x2 and y = x2 → x1.

To synthesize the planning program in Figure 3 starting
from scratch we need to automatically discover the condi-
tion y = ¬x1 ∧ x2 that determines how the input examples
should be classified. In this case the unsupervised learning
task is to identify the derived fluents that allow a compact
classification model. This task can be addressed by extend-
ing the compilation for solving generalized planning tasks
with a unification mechanism (Lotinac et al. 2016). Note
that this is a more traditional ML task than the structured
prediction addressed in previous sections, which classifies
examples according to behavior rather than their features.

Evaluation

We evaluated our approach empirically on an Intel Core i5
3.10 GHz x 4 processor with a memory bound of 4GB and
a time constraint of 600 seconds. We use the classical plan-
ner Fast Downward (Helmert 2006) in the LAMA-2011 set-
ting (Richter and Westphal 2010) to solve the compiled clas-
sical planning instances. We performed two kinds of exper-
iments1:

1. Compute a valid classification model 〈S, f〉 given an un-
supervised classification task 〈Φ, E,m〉.

2. Classify a given planning instance P given an existing
model 〈S, f〉 by determining the planning program in S
that solves P .

Benchmarks

The instances used in experiments come from three generic
domains (i.e. planning frames). In these generic domains,
all planning instances share the planning frame Φ = 〈F,A〉.
This means that we can first create clusters for the planning
instances in E, compute the planning program that provides
the prototype behavior of each cluster, and then test multiple
planning instances for each task to see how they are classi-
fied.

In the first domain, Grid, the goal is to navigate to a goal
position by incrementing or decrementing the x or y values.
The domain also includes fluents that represent the goal po-
sition (cf. the example in Figure 1). The second domain,
List, models lists of integers, in which actions iterate over
list elements or apply an operation to the current list ele-
ment. In the third domain, Boolean Circuits, actions consist
of applying Boolean functions such as and, not, and or with

1The source code and benchmarks are available at
https://github.com/aig-upf/automated-programming-framework

457

Insts Lines Clusters Facts Oper Search Preprocess Total

Grid H-V 4 2 4 284 292 0.04 1.23 1.27
Quadrant 4 4 2 356 634 5.77 1.04 6.81

List Visit 4 4 2 362 762 0.20 0.51 0.71

Bool Assign 8 2 2 220 194 0.17 0.38 0.55
Nor-Nand 8 3 2 326 330 0.79 0.56 1.35

Table 1: Number of learning instances; bounds on the number of lines per cluster and clusters; number of facts and operators in
the compiled classical planning task; search, preprocessing and total time (in seconds) elapsed while computing the solution.

conditional effects, using Boolean variables {x1, x2, y} to
create the circuits.

For the Grid domain we created two different classifica-
tion tasks: H-V that comprise horizontal and vertical naviga-
tion tasks and Quadrant where navigation is done towards
the top-right or bottom-left quadrant (cf. Figure 2).

In the List domain we tested a Visit task whose classes are
to perform operations (i.e. visit) on all the list elements or
only on every second element (odd positions in the list). For
the Boolean Circuits domain we implemented two tasks:
Assign, in which the aim is to perform either of these two
operations x1 ← x2 and x2 ← x1; and NOR-NAND, in
which the aim is to correctly create and classify nor and
nand circuits.

Computing Classification Models

Table 1 summarizes the results of the first kind of exper-
iments. In this table we provide the number of input in-
stances, the bounded number of lines for each planning pro-
gram, and the number of clusters (each corresponding to a
planning program). Also we report some data of the plan-
ning compilation like the number of facts and operators the
planner has to handle, and the times required for preprocess-
ing and search.

The solutions obtained in H-V were four clusters decreas-
ing or increasing the corresponding variable (x or y) in order
to reach the target position along a horizontal or vertical line.

Π1 : 0.inc(x), 1.goto(0, !(x = xG)),

Π2 : 0.dec(y), 1.goto(0, !(y = yG)),

Π3 : 0.dec(x), 1.goto(0, !(x = xG)),

Π4 : 0.inc(y), 1.goto(0, !(y = yG)).

Regarding the Quadrant task, the two planning programs
have to navigate to a specific target position in one of the two
quadrants (top-right or bottom-left), so the planning pro-
gram Π1 for Quadrant is the combination of Π1 and Π4

from the H-V task, and program Π2 for Quadrant is the
combination of Π2 and Π3 from the H-V task.

In the task for the List domain, the first program Π1 visits
all elements of the list:

Π1 : 0.visit(n), 1.next(n), 2.goto(0, !(n = nil)),

while the second program Π2 only visits every second ele-
ment by applying the next action twice in each iteration.

In the Boolean Circuits domain, the input is always the
whole set of Boolean variable assignments corresponding to

Assign

Input Π1 Π2

x1 x2 x1 x2 x1 x2

0 0 0 0 0 1
0 1 1 1 0 0
1 0 0 0 1 1
1 1 0 1 1 1

Table 2: Boolean results for Assign task

NOR-NAND

Input Π1 Π2

x1 x2 y x1 x2 y x1 x2 y
0 0 0 1 0 1 1 0 0
0 1 0 1 1 1 0 1 0
1 0 0 1 0 1 0 0 0
1 1 0 1 1 1 0 1 0

Table 3: Boolean results for NOR-NAND task

a given Boolean circuit. In this case, instead of obtaining
the expected Boolean functions, the planner finds sequences
of actions that set the outcome to true or false, thus classi-
fying input instances depending on the value of the variable
in the goal condition (true or false). The prototype planning
programs for clusters in Assign are

Π1 : 0.not(x1), 1.and(x1, x2),

Π2 : 0.not(x2), 1.or(x2, x1),

while in NOR-NAND they are

Π1 : 0.not(y), 1.or(x1, y),

Π2 : 0.or(x1, x2), 1.not(x1).

The not(var) function directly modifies the var value
while or(var1,var2) and and(var1,var2) assign the result
to the left variable var1. The Boolean functions computed
for the Assign task appear in Table 2, and those for NOR-
NAND in Table 3. Their input instances are the four possible
combinations of two boolean variables x1 and x2 for two
program classifiers (eight instances in total), and the goals
are to assign specific values to x1, x2 and/or y. Those goals
and planner classifications are in bold in the tables (e.g. As-
sign input x1 = 0 and x2 = 1 for task x2 ← x1, is classified
into Π2 such that x2 becomes 0). In order to avoid plan-
ners to just assign a value to a variable, like NOR-NAND
domain that requires a more complex strategy, the resulting
values have to be assigned to x1 and y.

458

Domain Task Tests Lines Clusters Facts Oper Search Preprocess Total

Grid H-V 8/8 2 4 180 52 0.06 10.31 10.37
Quadrant 6/6 4 2 102 30 0.02 0.98 1.00

List Visit 8/8 4 2 122 30 0.04 1.60 1.64
Pointers FRS 7/7 4 3 175 46 0.43 23.42 23.85

Table 4: Number of tests (Correctly Classified/Total); bounds on lines per cluster and clusters; number of facts and operators;
search, preprocessing and total time (in seconds) elapsed while computing the solution.

Determining Class Labels

For the second kind of experiments we create additional in-
stances for the tasks H-V, Quadrant and Visit. We were
unable to test the Boolean Circuits domain because the pre-
vious inputs already included all possible variable assign-
ments corresponding to a given Boolean circuit. In addition,
we test a new generic domain called Pointers in which the
three possible clusters have to perform find, select and re-
verse tasks on lists. The find task counts the number of oc-
currences of a given element in a list, the select task searches
for the minimum element in the list, and the reverse task re-
verses the order of the elements in the list.

Table 4 displays the same features as in Table 1, but the
planning programs are already programmed for each clus-
ter, so the instructions are included as fluents in the initial
state of the compiled classical planning instance and the set
of instances are included as tests in the domain (correctly
classified / total number of instances). The idea is to check
the outcome of noise-free classification for more complex
problems, instead of dedicating resources to the search of
the planning programs themselves, a costly operation due to
the exponential complexity in the bound on the number of
lines.

All the tests in the second table have been classified cor-
rectly using the provided knowledge in the form of existing
planning programs. Nevertheless, we can find some extreme
cases where planning programs with different structures can
come up to the same result given an instance. In these sit-
uations, the classical planner can classify the instance in an
arbitrary way, using by default the plan length, since its be-
havior is consistent with any of the clusters.

Related work

Previous work on learning generalized policies already re-
laxed traditional ML assumptions in the representation of
learning examples and in the output of the learning pro-
cess. In particular these works computed, from a set of
planning tasks, a function mapping state and goals, into the
preferred action to execute in the state to achieve the goals.
The followed approach was extending the classic algorithm
for learning decision lists to the planning setting (Khardon
1999; Martı́n and Geffner 2004).

Inductive Logic Programming (ILP) (Muggleton 1999)
also deals with ML tasks where the examples and the learned
models are described in logic. A relevant example is the ILP
algorithm that extends to the logic setting the classic ML al-
gorithm for learning decision trees (Blockeel and De Raedt
1998) and that has was also used to learn generalized poli-
cies (De la Rosa et al. 2011).

As already mentioned, our work is also related to existing
work that synthesizes programs in order to output structured
information about inputs (Lake, Salakhutdinov, and Tenen-
baum 2015; Ellis, Solar-Lezama, and Tenenbaum 2015).

Conclusions

In this paper we formalize unsupervised classification of
planning instances. We follow a prototype-based clustering
approach where generalized plans act as prototype clusters
that capture patterns in the solutions of different planning in-
stances. To do so we extend the planning program formalism
for representing generalized plans and introduce a compila-
tion that allows us to perform unsupervised classification of
planning instances using an off-the-shelf classical planner.

Our compilation assumes that the number of clusters m is
a priori known. If lower values of m are used the classical
planner will not be able to find a solution. Larger values of
m do not formally affect to our compilation, but in practice
classical planners are sensitive to the size of their inputs so
they affect performance and may result in overfitting. By
overfitting we mean that a larger m finds more structures
with the same set of instances, thus it will be easier to fail in
the classification of a new instance.

Generalized planning algorithms can also be understood
as unsupervised learning methods where the examples to
classify are reachable states and class labels are the actions
to execute in any state. In this regard a generalized plan can
be seen as the learned cluster model because it assigns an
action to every reachable state. If the generalized plan is in-
duced from classical plans we can consider them as labels
and in this case the generalized planning algorithm would
correspond to supervised learning (De la Rosa et al. 2011).

In its current state our work cannot compete with state-of-
the-art ML techniques on standard unsupervised data-sets
(e.g. 2D clustering). Our models are noise-free by defini-
tion, and error over learning examples is not allowed. Still,
it does not mean we cannot misclassify an instance due to
an ambiguous structure. We believe however that connect-
ing the models of automated planning and ML is valuable
since it brings new benchmarks to planning and pushes the
scope of ML techniques.

An interesting direction for future work is to further re-
strict planning programs according to some criterion, which
would help make the approach scale better. Previous work
on synthesizing programs rely on program sketching (Solar-
Lezama 2008) or generate programs from acyclic gram-
mars (Ellis, Solar-Lezama, and Tenenbaum 2015). In both
cases, this severely restricts the search space for synthesiz-
ing programs. Quite likely, a similar approach could be used

459

in the compilation to classical planning to restrict the search
for planning programs (Baier, Fritz, and McIlraith 2007).

Acknowledgments This work is partially supported by grant
TIN2015-67959 and the Maria de Maeztu Units of Excellence Pro-
gramme MDM-2015-0502, MEC, Spain.

References

Albore, A.; Palacios, H.; and Geffner, H. 2009. A
translation-based approach to contingent planning. In In-
ternational Joint Conference on Artificial Intelligence.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art
planners. In ICAPS, 26–33.
Bakir, G.; Taskar, B.; Hofmann, T.; Schölkopf, B.; Smola,
A.; and Vishwanathan, S. 2007. Predicting Structured Data.
MIT Press.
Blockeel, H., and De Raedt, L. 1998. Top-down induction of
first-order logical decision trees. Artif. Intell. 101(1-2):285–
297.
Bonet, B.; Palacios, H.; and Geffner, H. 2010. Automatic
derivation of finite-state machines for behavior control. In
AAAI Conference on Artificial Intelligence.
De la Rosa, T.; Jiménez, S.; Fuentetaja, R.; and Borrajo, D.
2011. Scaling up heuristic planning with relational decision
trees. Journal of Artificial Intelligence Research 40:767–
813.
Ellis, K.; Solar-Lezama, A.; and Tenenbaum, J. 2015. Un-
supervised learning by program synthesis. In Advances in
Neural Information Processing Systems 28.
Fern, A.; Khardon, R.; and Tadepalli, P. 2011. The
first learning track of the international planning competition.
Mach. Learn. 84(1-2):81–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hu, Y., and De Giacomo, G. 2011. Generalized plan-
ning: Synthesizing plans that work for multiple environ-
ments. In International Joint Conference on Artificial In-
telligence, 918–923.
Jiménez, S., and Jonsson, A. 2015. Computing Plans with
Control Flow and Procedures Using a Classical Planner. In
Proceedings of the Eighth Annual Symposium on Combina-
torial Search, SOCS-15, 62–69.
Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review
27(04):433–467.
Khardon, R. 1999. Learning action strategies for planning
domains. Artificial Intelligence 113(1):125–148.
Lake, B.; Salakhutdinov, R.; and Tenenbaum, J. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350:1332–1338.
Liu, M.; Jiang, X.; and Kot, A. C. 2009. A multi-prototype
clustering algorithm. Pattern Recognition 42(5):689–698.

Lotinac, D.; Segovia, J.; Jiménez, S.; and Jonsson, A. 2016.
Automatic generation of high-level state features for gener-
alized planning. In International Joint Conference on Artifi-
cial Intelligence.
Martı́n, M., and Geffner, H. 2004. Learning generalized
policies from planning examples using concept languages.
Appl. Intell 20:9–19.
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M.
2013. Machine learning: An artificial intelligence ap-
proach. Springer Science & Business Media.
Muggleton, S. 1999. Inductive logic programming: issues,
results and the challenge of learning language in logic. Ar-
tificial Intelligence 114(1):283–296.
Palacios, H., and Geffner, H. 2009. Compiling uncertainty
away in conformant planning problems with bounded width.
Journal of Artificial Intelligence Research 35:623–675.
Ramırez, M., and Geffner, H. 2010. Probabilistic plan
recognition using off-the-shelf classical planners. In Pro-
ceedings of the Conference of the Association for the Ad-
vancement of Artificial Intelligence (AAAI 2010), 1121–
1126.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2016a.
Generalized planning with procedural domain control
knowledge. In Proceedings of the International Conference
on Automated Planning and Scheduling.
Segovia-Aguas, J.; Jiménez, S.; and Jonsson, A. 2016b. Hi-
erarchical finite state controllers for generalized planning. In
International Joint Conference on Artificial Intelligence.
Solar-Lezama, A. 2008. Program Synthesis By Sketching.
Ph.D. Dissertation.
Winner, E., and Veloso, M. 2003. Distill: Learning domain-
specific planners by example. In International Conference
on Machine Learning, 800–807.

460

