
Learning action durations from executions

Jesús Lanchas, Sergio Jiménez, Fernando Fernández and Daniel Borrajo
Departamento de Informática.

Universidad Carlos III de Madrid.
Avda. de la Universidad, 30. Leganés (Madrid). Spain.

jesus.lanchas@inbox.com, sjimenez@inf.uc3m.es, ffernand@inf.uc3m.es and dborrajo@ia.uc3m.es

Abstract

Accurate action models are essential for efficiently solving
automated planning tasks. An accurate action model allow
the planner to precisely foresee the consequences of execut-
ing actions in a given environment and therefore to find robust
and good quality plans. But when addressing planning tasks
in the real world, even hand-coding a simple STRIPS action
model is complex, thus defining action models capturing fur-
ther features, like the execution duration or costs, becomes
more difficult. Moreover, if these features can be captured at
a given instant they may vary over time. In this paper we auto-
matically model the duration of action execution as relational
regression trees learned from observing plan executions. And
we show how planners find better plans after incorporating
these models to their domain definition.

Introduction
Traditionally, the automated planning community assumes
complete and correct actions models for solving the plan-
ning tasks. But when addressing real world problems this as-
sumption is far from being true. As a result, diverse mecha-
nisms that automatically define action models have been de-
veloped: LIVE (Shen & Simon 1989) learned simple opera-
tors with quantified variables while incrementally exploring
the world; (Wang 1994) learned PRODIGY operators gener-
alizing observations of actions executions; TRAIL (Benson
1997) used ILP to induce operators represented as an ex-
tended version of Horn clauses; LOPE (Garcia-Martinez &
Borrajo 2000) incrementally learned reactive planning oper-
ators; ARMS (Yang, Wu, & Jiang 2005) and (Amir 2006)
learned STRIPS actions in partially observable domains; and
(Pasula, Zettlemoyer, & Kaelbling 2004) learned probabilis-
tic planning operators for stochastic domains. All of these
works focused on learning action models consisting only in
actions preconditions and outcomes.

In the last years, with the aim of bringing together the
theoretic algorithms and the real-world problems, the action
models for planning have become more complex. Nowa-
days, PDDL includes numeric variables, explicit time repre-
sentation and derived predicates that enrich the descriptions
of the world. The new planners are designed to cope with

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all these new features. However, they need accurate defini-
tions of these features and knowing in advance features like
the execution cost, duration or relevant derived predicates is
unfeasible in many real-world planning tasks. As an exam-
ple, in domains like workflow or education, the duration and
cost spent to perform an activity depend on many variables
as who is doing it, the day, the time,... And the cited mecha-
nisms for automatically action modelling were not designed
to cope with the new PDDL features.

In this paper we propose a mechanism to automatically
learn action-duration models from the observations of plan
executions. Specifically we use relational regression tree
learning to acquire patterns of the environment state that af-
fect the actions duration. The work described in the paper
is focused on learning models for actions durations, but this
same approach can be directly applied to learn models for
any fluent defined in the domain model, like action cost, re-
wards, etc.

System overview
We propose a three-phase process for the modelling of the
action duration: (1) knowledge acquisition, where plans are
automatically generated, executed and observations of these
executions are stored; (2) model learning, where the obser-
vations are used to induce the models of the duration of the
actions; and (3) redefinition of the action model, where
the induced duration models are incorporated to the action
model. Planning with this redefinition of the action model
allows to obtain solutions of smaller execution time. Fig-
ure 1 shows an overview of the whole modelling process
and how its three phases are integrated. The following sec-
tions are a detailed description of each of the three modelling
phases: knowledge acquisition, model learning and redefini-
tion of the action model.

Phase 1: Knowledge acquisition
During this phase plans are generated, executed and obser-
vations of these executions are stored. Although plans can
be generated using any off-the-shelf planner we decide us-
ing LPG (Gerevini & Serina 2002) because its stochastic be-
haviour provided us with assorted experience. The plans are
executed action by action and after each action execution the
corresponding observation is stored. Each execution obser-
vation is stored as a tuple of the form (sn, ai, fn+1), where:

Figure 1: The action duration modelling process.

• sn is a conjunction of literals representing the facts hold-
ing before the action ai execution.

• ai is the action executed.

• fn+1 is the value of the fluent we want to model after
the action execution, i.e., in the state sn+1. In our case
this fluent is the action duration, but it could be any other
fluent of the domain.

The Figure 2 shows an observation stored from the execu-
tion of the action pick-up(b1, b2) from a 3-blocks
blocksworld domain. It contains the literals representing the
state in which the action was executed, the action, and the
time spent in the execution (5 units of time). We tag all the
literals with the same id (observation1) to indicate they
all belong to the same observation.

% previous state
on-table(observation1,b0).
on(observation1,b2,b0).
on(observation1,b1,b2).
clear(observation1,b1).
emptyhand(observation1).

% action executed
pick-up(observation1,b1,b2).

% fluents values
spent-time(observation1,5).

Figure 2: Knowledge acquired after the execution of the ac-
tion pick-up(b1, b2).

The outcome of executing the plans is simulated by the
software of the probabilistic track of IPC. This software im-
plements a client/server design to simulate the execution of

actions according to a given PPDDL action model. Our ap-
proach implements the client side which has a STRIPS
action model with no knowledge about the actions du-
rations (incomplete domain). And the execution simulator
implements the server side fed with a PPDDL domain de-
scription with the duration model of the actions (complete
domain). When the outcome of an execution is unexpected
according to the incomplete domain, our planner replans,
i.e., the planner is recalled to solve the planning task in this
new scenario.

Phase 2: Model learning
At this phase an off-the-shelf system for learning relational
regression trees (Kramer 1996) is used to model the execu-
tion duration of the actions in the planning domain.

Inducing regression trees is a well-known approach to
build models for numeric variables. As decision trees, re-
gression trees are generated by splitting the training exam-
ples according to the values of their attributes that minimize
a measure of variance along the prediction variable. The
leaves of regression trees are labelled by regression formu-
las that fit the examples that satisfy the conditions along the
path from the root of the tree to that leaf. Relational trees
are the first-order logic upgrade of these classical trees. Un-
like traditional regression trees, relational regression trees
work with examples described in a relational language such
as predicate logic. This means that each example is not de-
scribed by a single feature vector but by a set of logic facts,
as the example shown in Figure 2. Thus, the nodes of the
tree do not contain tests about the examples attributes, but
logic queries about the facts holding in the examples.

Specifically, we use the TILDE system (Blockeel &
Raedt 1998), a relational tree learning tool that allows the
construction of both relational decision and regression trees
implementing the Top-Down Induction of Decision Trees al-
gorithm (Quinlan 1986). TILDE takes two inputs:

• The knowledge base, containing the examples of the tar-
get concept and the background knowledge. Our exam-
ples of the target concepts are the values of the fluents
(the fn+1 of the stored observations) and our background
knowledge are the actions executed and the literals hold-
ing in the state (the ai and sn of the stored observations).

• The settings file, specifying the parameters of the system
and the language bias. This bias consists of the types of
the variables in the predicates and the restrictions about
their instantiation. This knowledge is automatically ex-
tracted from the definition of the planning domain.

For every action ai defined in the planning domain we in-
duce a regression tree that models the execution duration of
ai. The nodes of the tree contain the conditions under which
the estimation of duration is true. And the leaf nodes con-
tain situation-dependent estimations of the action durations.
Thus, the deeper a leaf is in the tree the more specific is
its prediction. Figure 3 shows a regression tree induced for
the action pick-up in a blocksworld where the robot arm
can get blocked resulting in a longer execution time. The
information of the leaf nodes means: (1) the estimation of

the fluent spent-time in square brackets; (2) the num-
ber of examples classified in that leaf and (3) the relative
error committed when classifying the training examples in
that leaf, in square brackets too.

spent-time(-A,-B)
[5.52] 75.0
arm-blocked(A) ?
+--yes: [10.0] 27.0 [0.0]
+--no: [5.0] 48.0 [0.0]

Figure 3: Regression tree induced for the action pick-up.

Phase 3: Redefinition of the action model
This phase incorporates the induced regression trees into the
domain model. Each regression tree induced for a particu-
lar action of the planning domain is transformed into con-
ditional effects of this action. The path of test nodes from
the root of the regression tree to each leaf corresponds to
the conjunction of literals of the condition in the conditional
effect. The estimation of the leaf node corresponds to an
increase effect. Figure 4 shows the PDDL conditional
effects resulting from the transformation of the regression
tree of Figure 3. As the outcome of this phase is standard
PDDL code it can be used to feed an off-the-shelf numeric
planner.

(when (arm-blocked)
(increase (spent-time) 10))

(when (not (arm-blocked))
(increase (spent-time) 5))

Figure 4: The resulting PDDL conditional effects.

Experiments
This section describes the experiments carried out to deter-
mine whether the induced duration models lead planners to-
wards better solutions.

The domain
We have used the probabilistic Blocksworld domain
from IPC5. Besides the four traditional actions of the
blocksworld: pick-up, pick-up-from-table,
put-on-block and put-down-on-table, this
domain defines the following new set of actions:
pick-tower, to pick up two blocks together;
put-tower-on-block, to leave a two-blocks tower on
a block; and put-tower-down, to leave a two-blocks
tower on the table. For all the experiments our system
initially does not know the duration of the actions since it is
fed with a simple STRIPS action model (Figure 5). And the
target of the modelling process is the fluent spent-time,
that represents the time spent by an action execution.

In the execution simulator we have defined three config-
urations of the probabilistic blocksworld in order to cover
different durations models:

(:action pick-up
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))

(emptyhand)
(clear ?b1)
(on ?b1 ?b2))

:effect (and (holding ?b1)
(clear ?b2)
(not (emptyhand))
(not (clear ?b1))
(not (on ?b1 ?b2))))

Figure 5: Example of STRIPS action considered by our sys-
tem.

1. Deterministic durations. This is the simplest configura-
tion, where actions duration is a fixed constant. In this
case the actions in the simulator deterministically increase
the fluent spent-time. As an example, the Figure 6
shows the action pick-up as it is defined in the sim-
ulator. In this configuration, the execution of the action
pick-up always takes 3 units of time.

(:action pick-up
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))

(emptyhand)
(clear ?b1)
(on ?b1 ?b2))

:effect (and (holding ?b1)
(clear ?b2)
(not (emptyhand))
(not (clear ?b1))
(not (on ?b1 ?b2))
(increase (spent-time) 3)))

Figure 6: Action pick-up in the deterministic configura-
tion of the simulator.

2. Situation-dependent duration. In this configuration, the
actions durations depend on the state of the robot-arm
and the blocks handled. Now the actions in the simula-
tor incorporate conditional effects to increase the fluent
(spent-time) according to the state of the robot-arm
(arm-blocked) or the handled blocks (is-heavy
?block). Figure 7 shows the definition of the action
pick-up in the simulator. In this definition when the
robot arm is blocked or is handling heavy blocks it takes
more time to complete the execution of the actions than
usual. Besides, a probabilistic effect has been introduced
to randomly modify the state of the robot arm after the
action execution.

3. Stochastic duration. In this configuration, the actions
have situation-dependent and probabilistic outcomes. It
represents the domains where the action duration depends
also on circumstances of the environment that are not cap-
tured within the domain predicates. Figure 8 shows the
definition of the action pick-up in the simulator. Ac-
cording to this schema, one out of three times the execu-
tion takes less time without any observable reason.

(:action pick-up
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))

(emptyhand)
(clear ?b1)
(on ?b1 ?b2))

:effect
(and

(holding ?b1)
(clear ?b2)
(not (emptyhand))
(not (clear ?b1))
(not (on ?b1 ?b2))
(when (and (not (is-heavy ?b1))

(not (arm-blocked)))
(increase (spent-time) 3))

(when (and (not (arm-blocked))
(is-heavy ?b1))

(increase (spent-time) 20))
(when (and (not (is-heavy ?b1))

(arm-blocked))
(increase (spent-time) 8))

(when (and (is-heavy ?b1)
(arm-blocked))

(increase (spent-time) 30))
(probabilistic

1/2 (arm-blocked)
1/2 (not (arm-blocked)))))

Figure 7: Action pick-up in the situation-dependent con-
figuration of the simulator.

The induced models
We have induced action duration models from the observa-
tions gathered after solving 50 random 5-blocks problems
with the planner LPG. The experiments show that the in-
duced models faithfully correspond to the actual models for
each of the three configurations of the simulator.

1. In the deterministic configuration, our models exactly
capture the time consumed by the execution of each ac-
tion. As shown in Figure 9, the induced trees consists of
a single leaf node with the exact numerical value for the
fluent spent-time and relative error of 0.0.

2. In the situation-dependent configuration our models suc-
cessfully captured the conditions of the action durations
so the relative error in the leaf nodes is 0.0 too. The Fig-
ure 10 shows the logical regression tree induced for the
pick-up action. The first query tests whether the arm
is blocked or not. In both answers the following question
is if a heavy (is-heavy) block (C or E) exists. In affir-
mative answer it is verified if that block is the one that is
tried to pick up from the table.

3. In the stochastic configuration our models also captured
successfully these conditions of the durations. But in this
case, the relative error of the leaf nodes is not 0.0 because
the leaf nodes do not represent an exact duration but the
average of the durations observed in the examples. Fig-
ure 11 shows the logical decision tree induced by TILDE
for the action pick-up in this configuration.

(:action pick_up
:parameters (?b1 ?b2 - block)
:precondition (and (not (= ?b1 ?b2))

(emptyhand)
(clear ?b1)
(on ?b1 ?b2))

:effect
(and
(holding ?b1)
(clear ?b2)
(not (emptyhand))
(not (clear ?b1))
(not (on ?b1 ?b2))
(when (and (not (is-heavy ?b1))

(not (arm-blocked)))
(probabilistic
2/3 (increase (spent-time) 3)
1/3 (increase (spent-time) 2)))

(when (and (not (arm-blocked))
(is-heavy ?b1))

(probabilistic
2/3 (increase (spent-time) 20)
1/3 (increase (spent-time) 14)))

(when (and (not (is-heavy ?b1))
(arm-blocked))

(probabilistic
2/3 (increase (spent-time) 8)
1/3 (increase (spent-time) 5)))

(when (and (is-heavy ?b1)
(arm-blocked))

(probabilistic
2/3 (increase (spent-time) 30)
1/3 (increase (spent-time) 20)))

(probabilistic
1/2 (arm-blocked)
1/2 (not (arm-blocked)))))

Figure 8: Action pick-up in the stochastic configuration
of the simulator.

Evaluation of the induced models
Since the aim of our approach is to discover knowledge
about the actions execution duration we evaluate the ben-
efits of our approach by comparing the quality of the plans
generated with and without incorporating the induced dura-
tion models to the initial STRIPS domain theory. We have
evaluated the models obtained with the the three configu-
rations of the simulator (deterministic, situation-dependent
and stochastic) using a test set of 30 problems of increas-
ing difficulty randomly generated. And we have measure
the average value of the metric spent-time after solv-
ing each of these test problems 15 times. The graphs of the
Figure 12 show the obtained results. According to them the
domains incorporating the duration models (LPG with ex-

spent-time(-A,-B)
[3.0] 2280.0 [0.0]

Figure 9: Tree induced by TILDE for the action pick-up
in the deterministic configuration of the simulator.

spent-time(-A,-B)
arm-blocked(A) ?
+--yes: is-heavy(A,-C) ?
| +--yes: pick-up(A,C,-D) ?
| | +--yes: [30] 152.0 [0.0]
| | +--no: [8] 225.0 [0.0]
| +--no: [8.0] 9.0 [0.0]
+--no: is-heavy(A,-E) ?

+--yes: pick-up(A,E,-F) ?
| +--yes: [20.0] 183.0 [0.0]
| +--no: [3.0] 364.0 [0.0]
+--no: [3.0] 20.0 [0.0]

Figure 10: Tree induced by TILDE for the action pick-up
in the situation-dependent configuration of the simulator.

spent-time(-A,-B)
[9.0935] 1080.0
arm-blocked(A) ?
+--yes:[12.0711] 464.0
| is-heavy(A,-C) ?
| +--yes:[13.0779] 385.0
| | pick-up(A,C,-D) ?
| | +--yes:[27.2174] 115.0 [0.4197]
| | +--no: [7.05555] 270.0 [0.0849]
| +--no: [7.1645] 79.0 [0.1523]
+--no: [6.8506] 616.0

is-heavy(A,-E) ?
+--yes:[7.6964] 514.0
| pick-up(A,E,-F) ?
| +--yes:[18.0714] 168.0 [0.2168]
| +--no: [2.6589] 346.0 [0.0255]
+--no: [2.5882] 102.0 [0.0489]

Figure 11: Tree induced by TILDE for the action pick-up
in the stochastic configuration of the simulator.

perience and Metric-FF with experience) allow to generate
plans with smaller execution time.

For the three configurations of the simulator, LPG was run
with a limit for planning of ’3 solutions or 30 seconds time’
and, in the case of LPG with experience, with the optimiza-
tion option to minimize the metric (spent-time). The results
obtained by LPG with experience (using the induced mod-
els) are overall better. But this is not always true (problems
3, 25 or 29 of the deterministic configuration) because of the
stochastic behaviour of this planner. For the three configu-
rations of the simulator, Metric-FF was run with 2 hour time
limit for planning and in the case of Metric-FF with expe-
rience with the optimization option to minimize the metric
(spent-time). The results obtained by Metric-FF are overall
better using the induced models but in some problems like
problems 1, 16 and 33 of the stochastic configuration, the
induced model adds such complexity to the domain theory
that Metric-FF optimizing the metric is not able to find any
solution in the time limit.

This approach is useful for any domain where goals can
be achieved by different plans and the quality of the plans
is an important issue. For example, in the probabilistic
blocksworld domain. In this domain, problems can be

Figure 12: Experimental plans durations.

solved managing blocks individually or handling towers of
them. At the beginning our system had no information about
which way of handling the blocks was better. After the mod-
elling process we obtained PDDL models for the actions
execution duration in the environment that an off-the-shelf
numeric planner can directly use to generate good quality
plans. The experimental results have shown that because the
induced models are correct, considering them to plan pro-
vide solutions with smaller execution time. The work de-
scribed in the paper focuses on learning models for actions
durations, but the same approach can be directly applied to
learn models for any fluent defined in the domain model.

Related work
The relational version of regression trees have not been pre-
viously applied to planning action modelling, but the classi-
cal versions of both regression and decision trees have being

used for action modelling in autonomous robots. (Haigh
& Veloso 1999) used decision tree learning to acquire rules
that prioritize the activities of the robot ROGUE according
to the values of its sensors. (Balac, Gaines, & Fisher 2000)
learned regression trees that proposed the next action for a
mobile robot according to the sensed current state of the en-
vironment. In both cases, since the learning techniques are
propositional the internal nodes of the trees consist only of
tests over numerical values. So they were not able to predict
according to relational representations of the state, like the
ones used in automated planning.

Otherwise, relational tree learning have also been used to
induce action policies for reactive systems (Dzeroski, Raedt,
& Blockeel 1998). As in our approach, the predictions de-
pended on conditions of the state described relationally. But
in this case, the target of the learning process is not an ac-
tion model but a policy. So unlike our approach, every time
a new problem with different goals has to be achieved, new
relational trees have to be learnt again, even if the dynamics
of the environment do not change.

Conclusions and future work
In this paper we have presented and evaluated an inductive
relational machine learning approach to model the duration
of planning actions execution. Our approach generates ac-
curate models of the durations of the action execution when
they are deterministic, situation-dependent or stochastic and
these models can be used by any off-the-self planner. This
approach is useful for planning task where goals can be
achieved by different plans, and the quality of the plans mat-
ters but it is ’a priori’ unknown.

In many domains, the duration of an action execution is
a function over others fluents. In these cases, the estima-
tions of the tree node leaves should not be a numeric value
but a mathematical formula. Given that TILDE can learn
regression models in the leaf nodes, this tool could be also
used for modelling this kind of knowledge. Moreover, our
approach assumes the total observability of the environment
so the observations obtained after an action executions are
always perfect. Further work has to be done in order to ac-
quire models for action durations in environments where the
observations could be wrong or incomplete. Besides, the im-
plementation of incrementally learning strategies to on-line
incorporate the new learnt knowledge is still in progress.

References
Amir, E. 2006. Learning partially observable action
schemas. In Proceedings of the 21st National Conference
on Artificial Intelligence (AAAI’06), 2006.
Balac, N.; Gaines, D. M.; and Fisher, D. 2000. Using
regression trees to learn action models. In IEEE Systems,
Man and Cybernetics Conference, Nashville.
Benson, S. S. 1997. Learning Action Models for Reactive
Autonomous Agents. Ph.D. Dissertation, Stanford Univer-
sity.
Blockeel, H., and Raedt, L. D. 1998. Top-down induction
of first-order logical decision trees. Artificial Intelligence
101(1-2):285–297.

Dzeroski, S.; Raedt, L. D.; and Blockeel, H. 1998. Rela-
tional reinforcement learning. In International Workshop
on Inductive Logic Programming, 11–22.
Garcia-Martinez, R., and Borrajo, D. 2000. An integrated
approach of learning, planning, and execution. Journal of
Intelligent and Robotics Systems 29:47–78.
Gerevini, A., and Serina, I. 2002. LPG: a planner based on
local search for planning graphs. Proceedings of the Sixth
International Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS’02).
Haigh, K. Z., and Veloso, M. M. 1999. Learning situation-
dependent rules. In Improving Task Planning for an Incom-
pletely Modelled Domain. 1999 AAAI Spring Symposium
on Search Techniques for Problem Solving under Uncer-
tainty and Incomplete Information.
Kramer, S. 1996. Structural regression trees. In Proceed-
ings of the Thirteenth National Conference on Artificial In-
telligence (AAAI-96), 812–819. Cambridge/Menlo Park:
AAAI Press/MIT Press.
Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules. Proceedings
of the Fourteenth International Conference on Automated
Planning and Scheduling.
Quinlan, J. 1986. Induction of decision trees. Machine
Learning 1:81–106.
Shen, W.-M., and Simon. 1989. Rule creation and rule
learning through environmental exploration. In Proceed-
ings IJCAI-89, 675–680.
Wang, X. 1994. Learning planning operators by observa-
tion and practice. In Proceedings of the Second Interna-
tional Conference on AI Planning Systems, AIPS-94, 335–
340. Chicago, IL: AAAI Press, CA.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning action
models from plan examples with incomplete knowledge.
In In Proceedings of the ICAPS 2005. Monterey, CA USA,
241–250.

