
A review of generalized planning

Sergio Jiménez
Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València.

Camino de Vera s/n. 46022 Valencia, Spain

serjice@dsic.upv.es

Javier Segovia-Aguas and Anders Jonsson
Information and Communication Technologies

Universitat Pompeu Fabra

Roc Boronat 138, 08018 Barcelona, Spain

{javier.segovia,anders.jonsson}@upf.edu

August 3, 2018

Abstract

Generalized planning studies the representation, computation and eval-
uation of solutions that are valid for multiple planning instances. These
are topics studied since the early days of AI. However, in recent years, we
are experiencing the appearance of novel formalisms to compactly repre-
sent generalized planning tasks, the solutions to these tasks (called gener-
alized plans) and efficient algorithms to compute generalized plans. The
paper reviews recent advances in generalized planning and relates them
to existing planning formalisms, such as planning with domain control
knowledge and approaches for planning under uncertainty, that also aim
at generality.

1 Introduction

Automated Planning (AP) can solve complex deliberative tasks in highly struc-
tured environments by exploiting models of the agents and their environment [32,
34]. Traditionally the solutions generated by automated planners are tied to a
particular planning instance and hence, do not generalize.

Generalized planning goes one step further and studies the computation of
planning solutions that generalize over a set of planning instances. In the worst
case, each instance in the set may require a different solution. In many cases
however, it is possible to compute a single compact solution that exploits some
common structure of multiple planning instances.

1

A generalized plan is an algorithm-like solution that is valid for a given set
of planning instances. An illustrative example is the following generalized plan
for the well-known blocksworld domain [89], where the goal is to stack the blocks
on each other in a given pattern. This generalized plan solves any instance in
the domain, regardless of the number of blocks and the names of the blocks.

(1) Put all the blocks on the table.

(2) Move a block X on top of a block Y whenever 1) X and Y are clear; 2) X is

supposed to be on Y in its goal position; and 3) Y is already at its goal position.

Figure 1 depicts three different blocksworld instances (named Prob1, Prob2
and Prob3 with two, three and four blocks respectively) that are solvable by
the previous generalized plan. For each instance, the figure shows the blocks
configuration for the initial state (left side) and the corresponding goal state
(right side).

Figure 1: Three different example instances from blocksworld. Each instance shows
the blocks configuration for the initial state (left side) and goal state (right side).

The problem of computing general solutions for complex decision-making
tasks has been studied since the early days of AI [68]. In recent years we are
experiencing a renewed interest caused by the appearance of novel formalisms
for representing families of planning solutions, as well as new algorithms to
compute such solutions. These advances reveal the potential of techniques from
generalized planning and encourage the application of planning to diverse ar-
eas of computer science such as program synthesis, autonomous control, data
wrangling or form recognition [4, 36, 94].

This paper reviews these recent advances in generalized planning and relates
them to existing formalisms that also aim at generality within automated plan-
ning, such as planning with domain control knowledge and different approaches
for planning under uncertainty. First, the paper provides a background on au-
tomated planning, formalizes the generalized planning task, and introduces our
criteria for reviewing the work on generalized planning. Second, the paper dis-
cusses different approaches for specifying sets of planning tasks. Third, the
paper surveys diverse representation formalisms for generalized plans analyz-
ing their strengths and weaknesses. Fourth, current algorithms for computing
generalized plans are examined. Finally the paper ends discussing different
implementations and identifying open research questions to encourage future
research.

2

2 Background

This section introduces classical planning (the vanilla model for AP), proposes
a formal model for generalized planning based on classical planning, and defines
the framework we use to analyze the existing work on generalized planning.

2.1 Classical Planning

The classical planning model is the most common model for automated planning,
and is based on the following assumptions:

1. The planning task to solve has a finite and fully observable state space.

2. Actions are deterministic and cause instantaneous state transitions.

3. Goals are conditions referred to the last state reached by a solution plan.

Therefore, a solution to a classical planning instance is a sequence of applicable
actions that transforms a given initial state into a goal state, i.e. a state that
satisfies a previously specified set of goal conditions [32].

Formally we use F to denote a set of propositional variables or fluents that
together describe a state. A literal l is a valuation of a fluent f ∈ F , i.e. l = f
or l = ¬f . A set of literals L on F is well-defined if there does not exist a fluent
f ∈ F such that f ∈ L and ¬f ∈ L. Hence a well-defined literal set L assigns at
most one value to each fluent in F , effectively representing a partial assignment
of values to fluents. We use L(F) to denote the set of all well-defined literal sets
on F . Given L, let ¬L = {¬l : l ∈ L} be its complement.

A state s is a literal set in L(F) such that |s| = |F |, i.e. a total assignment
of values to fluents. Explicitly including negative literals in states simplifies
subsequent definitions, but we often abuse notation by defining a state s only
in terms of the fluents that are true in s, as is common in Strips planning.

A classical planning frame is a tuple Φ = 〈F,A〉, where F is a set of fluents
and A is a set of actions. Each action a ∈ A has a precondition pre(a) ∈ L(F)
and a set of effects eff(a) ∈ L(F). An action a ∈ A is applicable in a given state
s iff pre(a) ⊆ s, i.e. if its precondition holds in s. The result of executing an
applicable action a ∈ A in a state s is a new state θ(s, a) = (s\¬eff(a))∪ eff(a).
Subtracting the complement of eff(a) from s ensures that θ(s, a) remains a well-
defined state.

Given a frame Φ = 〈F,A〉, a classical planning instance is a tuple P =
〈F,A, I,G〉, where I ∈ L(F) is an initial state (i.e. |I| = |F |) and G ∈ L(F)
is a goal condition. A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I and, for each i such
that 1 ≤ i ≤ n, ai is applicable in si−1 and generates the successor state
si = θ(si−1, ai). The plan π solves P if and only if G ⊆ sn, i.e. if the goal
condition is satisfied in the last state that is reached following the application
of π in I.

The Planning Domain Definition Language (PDDL) [59] is the input lan-
guage for the International Planning Competition (IPC) [96] and the de facto

3

standard for representing classical planning instances. Besides classical plan-
ning, PDDL can represent more expressive planning models such as temporal
planning or planning with path constraints and preferences [27, 33].

PDDL separates the representation of a given planning instance into two
parts, the domain and the problem:

• A PDDL domain defines predicates and action schemas, whose parame-
ters are instantiated on objects to respectively form fluents and ground ac-
tions. Figure 2 shows the PDDL action schema unstack from blocksworld,
whose effect is to unstack the top block from a tower of blocks (in PDDL
a question mark denotes the start of a variable name and a semicolon de-
notes the start of a comment). Apart from unstack, the PDDL definition
of the blocksworld domain includes three other action schemas: stack for
stacking a block onto a tower of blocks and pick-up and put-down, for
picking up a block from the table or putting a block down the table.

;;; PDDL definition of the unstack action schema

(:action unstack

:parameters (?x ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (empty))

:effect (and (hold ?x) (clear ?y)

(not (clear ?x)) (not (empty)) (not (on ?x ?y))))

Figure 2: Action schema unstack from the blocksworld coded in PDDL.

• A PDDL problem defines the objects of the planning instance, the ini-
tial state of these objects, and their goal conditions. Figure 3 shows the
PDDL representation of the three classical planning instances illustrated
in Figure 1.

Both the fluent set F and the action set A of a given planning problem are
instantiated by assigning objects, from the PDDL problem, to the parameters of
the predicates and action schemas (defined in the PDDL domain). For example,
if the unstack action schema is instantiated with parameters ?x = b1 and
?y = b2, then pre(unstack(b1, b2)) ={(on b1 b2), (clear b1), (empty)}.

PDDL assumes that different instances belonging to the same domain share
the same actions schemas, but this does not mean they share the same planning
frame. For example, the three blocksworld instances shown in Figures 1 and 3
have different sets of objects, which induce different fluent and action sets.

2.2 Generalized Planning

Generalized planning is often used as an umbrella term that refers to more gen-
eral notions of planning, like the computation of plans with control flow struc-
tures, planning with domain control knowledge or diverse models for planning

4

;;; PDDL definition of problem Prob1

(define (problem Prob1)

(:domain blocks)

(:objects b1 b2 - block)

(:init (clear b1) (ontable b1) (clear b2) (ontable b2) (empty))

(:goal (and (on b2 b1))))

;;; PDDL definition of problem Prob2

(define (problem Prob2)

(:domain blocks)

(:objects b1 b2 b3 - block)

(:init (clear b1) (on b1 b2) (on b2 b3) (ontable b3) (empty))

(:goal (and (on b3 b2) (on b2 b1))))

;;; PDDL definition of problem Prob3

(define (problem Prob3)

(:domain blocks)

(:objects b1 b2 b3 b4 - block)

(:init (clear b4) (on b4 b3) (on b3 b2) (on b2 b1) (ontable b1) (empty))

(:goal (and (ontable b1) (on b2 b1) (ontable b3) (on b4 b3))))

Figure 3: Three planning problems from the blocksworld domain coded in PDDL.

under uncertainty (such as conformant, contingent, MDP or POMDP plan-
ning [32]). This paper is a review of the work on generalized planning under
the assumptions of full state observability and deterministic actions.

Definition 1 A generalized planning instance is a finite set of classical plan-
ning instances P = {P1, . . . , PT } that share some common structure.

Previous approaches to compute general knowledge for automated planning,
such as macro-actions [25], case-based planners [11], or even the learning track
of the IPC [23], assumed that the given set of classical planning instances shares
the same predicates and action schemes.

More recent work imposes a stronger constraint on the classical planning in-
stances in a given generalized planning task, they must share the set of fluents
and the set of actions. Formally, the {P1, . . . , PT } instances in P belong to the
same planning frame Φ and hence, P1 = 〈F,A, I1, G1〉, . . . , PT = 〈F,A, IT , GT 〉
share the same set of fluents and actions and differ only in the initial state and
goals. This constraint forces the set of planning instances in a generalized plan-
ning task to share the same state space. Note that this definition of generalized
planning still makes it possible to encode instances P ∈ P with different number
of objects fixing their irrelevant fluents to False. For instance, when defining
the two-block planning task illustrated in Figure 1, any fluent referred to blocks
b3 and b4 is set to False.

5

A generalized plan can be viewed as a procedural representation of the in-
stances in a generalized planning task. Generalized plans are then generative
models that may have diverse forms. Each form with its own expressiveness
capacity and own computation and validation complexity. Generalized plans
range from programs [98, 84] and generalized polices [57] to Finite State Con-
trollers (FSCs) [10, 85], AND/OR graphs, formal grammars [77] or HTNs [66].
We can classify generalized plans according to their specification of the action
to apply next:

• Fully specified solutions, that unambiguously specify the action to
apply next, for solving every instance in a given generalized planning
task. Programs, generalized policies, or deterministic FSCs belong to
this class. Conformant, contingent or POMDP plans belong also to this
class (if we consider that the possible initial states represent different
classical planning instances all sharing the same state variables, actions
and goals [42]).

• Non specified. In this case the action to apply next is not explicitly
specified. For instance, a classical planner provided with a domain model
is a non specified generalized plan. Such a plan is very general (covers any
instance representable in the classical planner’s input language) but has an
inefficient execution mechanism (running the classical planner to produce
a fully specified solution for every instance in the generalized planning
task).

• Partially specified. Between these two extremes we find generalized plans
that share elements of both:

1. A planner is still required to produce a fully specified solution for a
particular instance.

2. Some general knowledge is exploited to constrain the possible solu-
tions.

The different approaches for planning with domain-specific control knowl-
edge belong to this class. This class includes planning with partially
specified programs, non-deterministic FSCs, formal grammars, AND/OR
graphs or HTNs that do not exactly capture the action to apply next.

Despite the different forms of generalized plans, we can define the conditions
under which a generalized plan is considered a solution to a given generalized
planning task.

Definition 2 The execution of a generalized plan Π in a classical planning in-
stance P = 〈F,A, I,G〉 is a classical plan, denoted as exec(Π, P) = 〈a1, . . . , an〉,
that induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I and, for each 1 ≤
i ≤ n, ai is applicable in si−1 and generates the successor state si = θ(si−1, ai).

6

Definition 3 A generalized plan Π is a solution to a given generalized planning
instance P = {P1, . . . , PT } iff the execution of Π on every classical planning
instance Pt, 1 ≤ t ≤ T produces a classical plan that solves Pt.

In the remainder of the paper we analyze, criticize and compare different
approaches to generalized planning following the abstract framework shown in
Figure 4:

• The problem generator box refers to a generative model of the instances in
the generalized planning task. A generalized planning task comprises a set
of individual planning tasks to be solved. This set of planning tasks can
either be finite or infinite. Likewise it can be specified in different ways,
e.g. an explicit enumeration of classical planning instances or implicitly
by using logic formulae, a probabilistic distribution, a problem generation
program, etc. Problem generation is skipped when an explicit specification
of the planning tasks is provided.

• The generalized planner box refers to an algorithm fed with an input-
output specification of the instances to solve and that generates a solution
to these instances. The algorithms for generalized planning range from
pure top-down approaches, that search in the space of generalized plans
a solution that covers all the input instances, to bottom-up approaches,
that compute a solution to a single instance, generalizing it and merging
it with previously found solutions to widen the coverage of the generalized
plan.

Figure 4: Abstract framework for generalized planning.

To illustrate our use of this abstract framework, we follow it here to look at
classical planning as if it were a generalized planning approach.

1. In classical planning the planner only receives as input a single and ground
planning instance.

7

2. The state-of-the-art algorithms for classical planning are heuristic search
in the state space [37, 30] or compilation to other forms of problem solving
such as SAT [78].

3. A classical plan is a sequence of actions and both the execution and valida-
tion of a classical plan are linear in the length of the plan. Nevertheless ac-
tions with conditional effects, variables and control-flow structures can be
used to compactly represent solutions to classical planning tasks [52, 82].

3 Representing Sets of Planning Tasks

This section analyzes different formalisms for representing sets of planning tasks
within generalized planning.

3.1 Representing Actions

Compact and general task representations usually require an action model where
different effects can occur depending on the current state of the world. An
example is the agent-centered action model of the ATARI video-game [62], where
the 18 possible actions have different effects according to the current state of the
video-game. Here, we review extensions to the classical planning action model
that aim more compact and general representations of the planning tasks and
the planning solutions.

3.1.1 Conditional effects

The model of classical planning with conditional effects is more expressive than
the basic classical planning model. Conditional effects cannot be compiled away
if plan size should grow only linearly [67]. A classical planning task with condi-
tional effects is a tuple P = 〈F,A, I,G〉, as defined for classical planning, except
for the set of actions A. Now, each action a ∈ A with conditional effects is
defined as:

• The preconditions, a set of literals pre(a) ⊆ L(F).

• The set of conditional effects, cond(a). Each conditional effect C � E ∈
cond(a) is composed of two sets of literals, C ⊆ L(F) (the condition) and
E ⊆ L(F) (the effect).

An action a ∈ A with conditional effects is applicable in a state s if and only if
pre(a) ⊆ s, and the resulting set of triggered effects is,

eff(s, a) =
⋃

C�E∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. The result of applying a in s is a new
state θ(s, a) = (s \¬eff(s, a))∪ eff(s, a). The definition of a plan, and a solution
plan, is analogous to that for planning problems without conditional effects.

8

PDDL supports the definition of conditional effects with the when keyword.
In PDDL the condition of a given conditional effect has the same expressiveness
as action preconditions and goals, so it can either be a negation, a conjunction,
a disjunction or a quantified formula, as defined in the ADL formalism [71, 27].
Many classical planners natively cope with conditional effects without compiling
them away. In fact since 2014, the support of PDDL conditional effects is a
requirement for participating at IPC [96].

The model of classical planning with conditional effects makes it possible to
repeatedly refer to the same action while the precise effects of the action are
determined by the state where the action is applied. For instance, the exe-
cution of the six-action sequence (unstack, put-down, unstack, put-down,

unstack, put-down) can unstack a single tower of either four, three or two
blocks if unstack and put-down are actions with conditional effects as defined
in Figure 5. The effects of these actions are defined using the universally quan-
tified variables ?x and ?y of type block. Quantified variables do not increase
the expressiveness of the actions but allow a more succinct representation. Note
that these actions are defined with a single tower of blocks otherwise, if there is
more than one tower, these actions would represent the unstacking of multiple
blocks at the same time.

(:action unstack

:parameters ()

:precondition (and)

:effect

(forall (?x ?y - block)

(and

(when (and (clear ?x) (on ?x ?y) (empty))

(and (hold ?x) (clear ?y)

(not (clear ?x)) (not (on ?x ?y)) (not (empty)))))))

(:action put-down

:parameters ()

:precondition (and)

:effect

(forall (?x - block)

(and (when (and (hold ?x))

(and (ontable ?x) (clear ?x) (empty)

(not (hold ?x)))))))

Figure 5: PDDL actions from a blocksworld version to unstack a single tower of blocks
using conditional effects and universally quantified variables.

9

3.1.2 Update formulas and high-level state features

The series of work by Srivastava et al. [91] on generalized planning encodes
the effects of actions with update formulas. An update formula is an arbitrary
FOL formulae, that includes transitive closure, defining the new value of a given
predicate after an action application. The transitive closure allows compact rep-
resentation of connectivity properties such as the above concept in blocksworld.

In more detail, a particular update formula for a predicate p has the form
p′ ≡ [¬p ∧∆+

p,a] ∨ [p ∧ ¬∆−p,a] where:

• p′ denotes the value of the predicate p after the application of action a.

• ∆+
p,a denotes the conditions under which p is changed to true by action a.

• ∆−p,a denotes the conditions under which p is changed to false by action a.

While this model for the action effects encodes more expressive state transi-
tions than simple conditional effects, it is not supported by off-the-shelf PDDL
classical planners.

Arbitrary FOL formulae, that include transitive closure, can be represented
in PDDL using derived predicates. Derived predicates can later be included in
action preconditions, conditional effects and goals. Figure 6 shows how PDDL
defines the above derived predicate that models whether a block ?x is above
another block ?y in a blocksworld tower.

(:derived (above ?x ?y - block)

(or (on ?x ?y)

(exists (?z - block)

(and (on ?x ?z) (above ?z ?y)))))

Figure 6: PDDL derived predicate with one existentially quantified variable ?z that
leverages recursion to capture when a block ?x is above another block ?y.

Derived predicates can represent expressive state queries including hierar-
chies over the state variables and recursion [93]. This has proven useful for
compactly representing planning tasks and also for more effective planning [45].
Figure 7 shows a PDDL derived predicate, with a quantified variable ?b, that
represents the set of blocksworld states where all blocks are on the table. Apart
from derived predicates, diverse formalisms have been used to represent state
queries in planning, ranging from first order clauses [97] to description logic for-
mulae [57], or even LTL formulae to define queries about sequence of states [20].

3.1.3 Sensing and non-deterministic actions

When states are fully observable, explicit sensing actions are not necessary given
that any state information is obtained via state queries. Sensing actions are

10

(:derived (all-ontable)

(forall (?b - block)

(and (clear ?b) (ontable ?b))))

Figure 7: Example of a PDDL derived predicate, with one universally quantified
variable ?b, that captures when all the blocks are on the table.

then suitable for planning under partial observability and they do not model
state transitions, but the observation of some piece of information from the
current state that is unknown. Planners apply sensing actions when the lack of
information about the current state prevents them from generating a plan that
achieves the goals with certainty.

If we assume that uncertainty about the current state decreases monotoni-
cally (i.e. once the value of a state variable is known it can change, but cannot
become unknown again) sensing actions can be encoded as non-deterministic
actions [65]. Figure 8 shows an example of a sensing action for observing the
color of a block encoded as a non-deterministic action. The oneof effect rep-
resents a kind of state constraint (often called state invariant) expressing that
as a result of the sensing action, a block can only have one of these four colors:
red, green, yellow or blue.

(:action sense-block-color

:parameters (?b - block)

:precondition (and (hold ?b)

(color ?b unknown))

:effect (and (not (color ?b unknown))

(oneof (color ?b red)

(color ?b green)

(color ?b yellow)

(color ?b blue)))

Figure 8: Non-deterministic action for sensing the color of a given block.

Sensing actions generate contingent plans, i.e. plans with decision points
predicated on the different sensing outcomes [1]. Contingent plans generalize
noise-free decision trees. A decision tree can be defined as a particular kind of
contingent plan: whose internal nodes contain only sensing actions and its leaf
nodes only contain actions that set a particular class label [87].

The action in Figure 8 assumes that there is no knowledge about the like-
lihood of the different sensing outcomes (e.g. because this knowledge is non-
stationary). When this knowledge is available, it can be encoded with probabilis-
tic effects using for instance PPDDL, the probabilistic version of PDDL [101].

11

Figure 9 shows a PPDDL action for sensing the color of a given block s.t. ob-
serving a red block is twice as probable. Planning with probabilistic actions
becomes an optimization task where the planner aims at maximizing the prob-
ability of reaching the goals. Both non-deterministic and probabilistic actions
can also encode non-deterministic state transitions, like in Fully Observable
Non-Deterministic (FOND) or MDP planning [58, 32].

(:action probabilistic-sense-block-color

:parameters (?b - block)

:precondition (and (hold ?b)

(color ?b unknown))

:effect (and (not (color ?b unknown))

(probabilistic 0.4 (color ?b red)

0.2 (color ?b green)

0.2 (color ?b yellow)

0.2 (color ?b blue)))

Figure 9: PPDDL action for sensing the color of a given block coded.

3.2 Representing Initial and Goal States

A set of states can be defined explicitly, enumerating each state in the set, or
implicitly, defining the constraints that a state has to satisfy to belong to the
set.

The set of instances in a generalized planning task can also be explicitly spec-
ified, enumerating the individual classical planning instances in the generalized
planning task. An example of this is the set of three blocksworld instances,
shown in Figure 1, plus their shared domain model with the action schemes for
the unstack, stack, pick-up and put-down actions. Implicit representations
of generalized planning tasks define two sets of constraints, one that defines the
set of possible initial states, and a second one defining the set of goal states. An
example of this is the conformant planning task shown in Figure 10 taken from
IPC-2008.

Here we review different formalisms for representing a set of planning in-
stances according to the language used for specifying these constraints:

• Propositional logic. In this case the sets of possible initial and goal states
are represented exclusively using literals and the three basic logical connec-
tives (and, to indicate a conjunction of literals or, to indicate a disjunction
of literals and not, to indicate negation). Examples of sets of planning
instances represented with propositional logic are conformant, contingent
or POMDPs planning tasks that define the different possible initial states
of the task as a disjunction on the problem literals (goals are shared for
all the possible initial states in the planning task) [10].

12

(define (problem conformant-b2)

(:domain blocks)

(:objects A B - block)

(:init

(and (oneof (empty) (hold A) (hold B))

(oneof (hold A) (clear A) (on B A))

(oneof (hold A) (ontable A) (on A B))

(oneof (hold B) (clear B) (on A B))

(oneof (hold B) (ontable B) (on B A))

(or (not (empty)) (not (hold A)))

(or (not (empty)) (not (hold B)))

(or (not (hold A)) (not (hold B)))

(or (not (hold A)) (not (clear A)))

(or (not (hold A)) (not (on B A)))

(or (not (clear A)) (not (on B A)))

(or (not (hold A)) (not (ontable A)))

(or (not (hold A)) (not (on A B)))

(or (not (ontable A)) (not (on A B)))

(or (not (hold B)) (not (clear B)))

(or (not (hold B)) (not (on A B)))

(or (not (clear B)) (not (on A B)))

(or (not (hold B)) (not (clear B)))

(or (not (hold B)) (not (on A B)))

(or (not (clear B)) (not (on A B)))

(or (not (on A B)) (not (on B A)))))

(:goal (and (ontable A) (on B A))))

Figure 10: Conformant planning task for a 2-block blocksworld. A single goal condi-
tion is defined for the different possible initial configurations of the two blocks.

• First-order logic. The benefit of first-order logic constraints is that they
can contain quantified variables, include the transitive closure and repre-
sent unbounded sets of states. These features make first-order formulae
achieve compact representations of sets of planning instances as well as
to represent planning tasks of unbounded size [91]. For a given finite set
of objects, a first order representation can be transformed straightforward
into a propositional logic representation.

• Constraint Programming. The previous representations restricted them-
selves to Boolean (two-valued) state variables. In this case sets of states
are defined by a set of finite-domain variables X = {x1, . . . , xn} (where
each variable xi, 1 < i < n has an associated finite domain D(xi)) and a
set of constrains C that determines when a state is part of the set.

13

Finite-domain variables are already de facto being used by classical plan-
ners: a standard preprocess to extract a many-valued representation from
Boolean state variables. This preprocess can be quite expensive but it is
completely unnecessary if states are represented with finite-domain vari-
ables [79]. In addition, constraint programming languages offer a great
representation flexibility and off-the-shelf CSP solvers can be used in this
case to solve the generalized planning tasks [74]. This representation can
be transformed into a first order representation with a given set of objects
representing the domain of the variables.

• Three-valued logic. In this logic language there are three truth values 1
(true), 0 (false), or 1

2 (unknown). Srivastava et al. use three-valued logic
for state abstraction, to compactly represent unbounded sets of concrete
states [91]. Three-valued logic has also been useful to represent and solve
conformant and contingent tasks [72, 69, 1].

Apart from the sets of initial and goals states, further information can be
used to specify a set of planning instances such as domain invariants [91], or
even classified execution histories including positive and negative examples [43],
similar to what is done in Inductive Logic Programming (ILP) [75].

4 Generalized Plans

With respect to classical plans, generalized plans have two benefits, compactness
and generality. In other words, generalized plans can be more succinct and be
valid for solving multiple classical planning instances.

4.1 Representation

As mentioned in Section 2, generalized plans may have diverse forms, each with
different expressiveness capacities and different execution mechanisms. The
syntax and semantics of the formalism chosen for representing generalized plans
defines the space of solutions that can be computed as well as the worst case
computation complexity.

4.1.1 Control flow

Control-flow structures augment the flexibility of generalized plans with respect
to classical plans:

• Branching: the execution of the plan branches according to the result
of the evaluation of a given expression in the current state. Examples
of planning solutions with branching structures are AND/OR tree-like
contingent plans [1] or K-fault tolerant plans [22].

• Loops: the execution of a plan segment is repeated until a given condition
holds in the current state. Examples of planning solutions with loops

14

include the policy-like plans used for representing solutions to MDPs [49],
and FOND planning tasks [64].

The size of a solution plan containing only branching constructs can be ex-
ponential in the number of possible state observations. Combining branching
and loops is often helpful to compress generalized plans. In some solution repre-
sentations, like DSPlanners [98], branching and loops correspond to different
control-flow constructs but often, they are implemented with the same construct
(e.g. conditional transitions) to keep the solution space tractable. This is what
happens in Finite State Controllers (FSCs) [10], generalized policies [57], or with
the conditional gotos used in planning programs [84].

Figure 11 shows a generalized plan, in the form of a planning program, for
unstacking a single tower of blocks no matter its height. The plan contains ac-
tions unstack and put-down (as defined in Figure 5) for unstacking the block at
the top of the tower and putting it down on the table, respectively. The control
flow instruction 2.goto(0,!(empty)) jumps back to the first step, 0.put-down,
when the robot hand is not empty. Note that such a compact and general plan
is definable because the actual effects of put-down and unstack depend on
the current state (put-down and unstack have the conditional effects shown in
Figure 5).

0. put-down

1. unstack

2. goto(0,!(empty))

3. end

Figure 11: Example of a generalized plan for unstacking a single tower of blocks.

4.1.2 Variables

Unstacking multiple towers of blocks is more challenging than unstacking a sin-
gle tower of blocks (there can be an arbitrary number of towers, each with dif-
ferent height). A general solution to this task cannot be compactly represented
branching and looping over the ground values of the given state variables.

DSPlanners address this issue representing solutions with quantified vari-
ables [98]. Quantified variables makes it possible to identify objects with partic-
ular features and to apply selective actions to the identified objects. Figure 12
shows a generalized plan for unstacking multiple towers of blocks that uses two
existential variables, ?b1 and ?b2. These variables capture the block to move
next, linking the parameters of lifted predicates and actions. The generalized
plan in Figure 12 has the form of a DSPlanner and its execution in a given
planning instance requires unifying variables ?b1 and ?b2 with actual blocks in
the current state of the planning task.

15

plan ← {}
while(in_current_state(on(?b1:block ?b2:block)) and

in_current_state(clear(?b1:block))) do
operator ← move -block -to -table(?b1:block ?b2:block)

execute operator

plan ← plan + operator

Figure 12: DSPlanner for unstacking multiple towers of blocks.

In the different formalisms for representing generalized plans, quantified vari-
ables appear as:

• Existential variables. An existential variable is a variable that asserts
that a given property, or relation, holds for at least one possible variable
value. Besides DSPlanners, existential variables also appear in choice
actions [91], i.e. actions instantiated during the execution of the plan and
as a result of evaluating a FOL formula in the current state. Another
example are generalized policies, whose rules contain variables to be uni-
fied with the current state [48]. PDDL can represent policies with derived
predicates [45], Figure 13 shows the PDDL derived predicates representing
a 2-rule policy for unstacking multiple towers of blocks (the encoding re-
quires that these derived predicates are added as extra preconditions of the
corresponding actions to make up the policy). More recently conjunctive
queries, including existential variables, are used to address classification
tasks that are modeled as generalized planning [55].

(:derived (apply-putdown ?x - block)

(and (hold ?x)))

(:derived (apply-unstack ?x ?y - block)

(and (empty) (clear ?x) (on ?x ?y)))

Figure 13: Two-rule policy for unstacking towers of blocks represented with two
PDDL derived predicates.

• Universal variables. A universal variable asserts that a given property or
relation holds for all the possible variable values. Figure 14 shows that
the program in Figure 11, for unstacking a single tower of blocks, can
be rewritten using the (all-ontable) derived predicate with universal
variables defined in Figure 7.

The use of derived predicates, that evaluate a given expression over quan-
tified variables, applies also to other forms of generalized plans such as FSCs.

16

0. unstack

1. put-down

2. goto(0,!(all-ontable))

3. end

Figure 14: Example of a generalized plan for unstacking a single tower of blocks using
the (all-ontable) derived predicate.

Figure 15 shows a FSC for collecting a green block in a tower of blocks that
achieve generalization because observations H and G are the result of evalu-
ating an expression over quantified variables. In particular H holds when a
block is being held and G when the top block is green. These two observa-
tions are defined using the derived predicates shown in Figure 16. The state
queries depend on the joint variant HG with four possible values (true-true,
true-false, false-true and false-false). Related to universal/existential variables
are also the angelic/devilish concepts used in the literature to define planning
hierarchies [56].

Figure 15: FSC for collecting a green block in a tower of blocks by observing whether
a block is being held (H), and whether the top block is green (G).

(:derived (H)

(exists (?b - block) (and (hold ?b))))

(:derived (G)

(exists (?b - block)

(and (clear ?b)

(color ?b green))))

Figure 16: Derived predicates with existential variables that capture when a block is
being held (H), and when the top block is green (G).

17

4.1.3 Call stack

A call stack is another artifact borrowed from programming to make general-
ized plans more flexible [31]. Although one can explicitly encode a call stack
using only basic control-flow and variables, more compact solutions are often
derived with a call stack (e.g. tasks with recursive solutions [85]). Figure 17
shows a generalized plan for visiting all the nodes of a binary tree implement-
ing a recursive Depth First Search (DFS) with one procedural parameter. The
instructions call(0,node) are recursive calls assigning argument node to the
only parameter of the program and restarting the execution from its first line,
0.visit(current).

0. visit(current)

1. goto(6,!isInternal(current))

2. left(current,child)

3. right(current,current)

4. call(0,current)

5. call(0,child)

6. end

Figure 17: Example of a generalized plan πDFS(node) implementing a recursive DFS
for traversing a binary tree of arbitrary size.

A given generalized plan can also be represented as a formal grammar
with a call stack [77, 86]. For instance, Figure 18 shows a grammar that en-
codes a generalized plan for blocksworld. The first instruction of this plan,
0.choose(1|5|8), is a choice instruction, that jumps to one of these three
possible targets, line 1, line 5 or line 8 and hence, represents a rule selection.
This action is non-deterministic since the rule selection is initially unknown and
determined only during the execution of the program. Lines 1-4 encode the
first grammar rule while lines 5-8 encode the second grammar rule. The third
grammar rule parses the empty string and is encoded implicitly by line 8.

0. choose(1|5|8)

1. unstack(X1,X2)

2. putdown(X1)

3. call(0)

4. end

5. pickup(X1)

6. stack(X1,X2)

7. call(0)

8. end

Figure 18: Grammar encoding a partially specified generalized plan for blocksworld.

Furthermore, the benefits of using a call stack in generalized planning come

18

from the reuse of existing generalized plans and the incremental building of
hierarchical generalized plans [84]. Figure 19 illustrates these benefits showing
a two-module generalized plan for sorting lists of numbers that implements the
selection sort algorithm and reuses Π1, a previously generated generalized plan
for finding the minimum number in a list. Here Π0, left side, is the main program
and its instruction call(1) invokes the execution of the auxiliary program Π1,
right side, from its first line, 0.inc-pointer(inner).

0. call(1)

1. swap(*mark,*outer)

2. inc-pointer(outer)

3. goto(0,!(eq(inner,itermax)))

4. end

(a) Π0: Main program that repeatedly selects the
minimum value and swap contents

0. inc-pointer(inner)

1. goto(3,!(lt(*inner,*mark)))

2. assign(mark,inner)

3. goto(0,!(eq(inner,itermax)))

4. end

(b) Π1: Auxiliary program that selects the min-
imum value from current position outer

Figure 19: Generalized plan with a procedure call for sorting list of numbers of
arbitrary size and that corresponds to the selection sort algorithm.

As a rule of thumb, a call stack allows the execution of a given generalized
plan to jump to another generalized plan:

• Keeping different contexts. Each generalized plan can have different local
state/variables.

• Sharing information. Passing information between the generalized plans
as procedural parameters or using global state/variables.

4.2 Execution and validation

Generalized plans can branch, loop and have variables so executing a general-
ized plan on a particular classical planning instance requires specific machinery,
different from the one traditionally used in classical planning:

• Branching. The execution of a generalized plan with different possible
execution branches requires a mechanism for selecting the corresponding
execution branch according to the current value of the state variables.
The execution of several generalized plan that branch (like an HTN, an
AND/OR tree-like plan or a policy) can be compiled into classical plan-
ning [3, 1, 45]. As explained in Section 3, different possible execution
outcomes according to different values of the state variables can be effec-
tively modeled in classical planning via conditional effects [67].

• Loops. Executing generalized plans that explicitly represent loops, like
programs (or FSCs), requires to keep track of the current program line (or
controller state). The execution of FSCs and programs can be compiled

19

into classical planning by encoding the corresponding automata (its states
and possible transitions) as extra state variables [7, 84, 85].

• Variables. If the generalized plan contains quantified variables, then plan
execution requires unification mechanisms that assign possible values to
these variables. Early planning systems implemented variable binding al-
gorithms for matching control rules [97]. Nowadays Fast-Downward
evaluates derived predicates with quantified variables implementing the
marking algorithm [37]. A different approach is to leverage external solvers,
such as Answer Set Programming [45] or CSP [29] solvers, to ground quan-
tified variables. The compilation approach has also been followed for bind-
ing existential variables in conjunctive queries [55] and to evaluate FOL
state queries with the transitive closure [73]. Unfortunately most current
off-the-shelf planners only effectively support simple conditions as conjunc-
tions of propositional atoms and compiling away existentially quantified
formulas have an exponential cost [28].

The simplest desired property for the execution of a generalized plan on
a given planning instance is termination, also referred in literature as the
halting problem. In the worst case, the number of actions of a generalized plan
execution has an upper bound given by the total number of possible states of
the generalized plan. Infinite loops can then be detected counting the number
of actions during plan execution and checking if this count exceeds the previous
upper-bound [6].

A second property for the execution of a generalized plan is guaranteeing
that the plan solves a given instance. Testing this property is called validation,
proving validation subsumes the proof of termination and is implicitly required
as a part of plan generation. Plan validation in classical planning is linear,
since either a validation proof or a failure proof is straightforward obtained by
executing the plan starting from the initial state of the classical planning task.
VAL [41], introduced in the 3rd International Planning Competition (IPC), is
the standard plan validation tool for classical planning.

The execution of a generalized plan (that can branch, loop and have vari-
ables) on a given planning instance can fail to solve that instance because:

1. The plan is unsound:

• The generalized plan does not satisfy the termination condition be-
cause it enters into an infinite loop.

• The action-to-apply-next (according to the generalized plan) cannot
be applied. For instance, the preconditions of the recommended ac-
tion do not hold in the current state.

• The execution of the plan ended but it did not achieve the goals of
the planning task. Some forms of generalized plans include explicit
termination actions (or states) so goal testing is only done when such
actions are applied (or such states reached) [46, 92]. If the generalized

20

plan lacks these termination actions (or states) goal achievement has
to be tested after executing every plan step [10].

2. The plan is incomplete. There is no action-to-apply-next for the current
state (e.g. a policy with no applicable rule at the current state).

The execution of a generalized plan on a given classical planning task can be
compiled into another classical planning task [7, 84, 85] and hence, an off-the-
shelf classical planner can be used to effectively check the previous validation
conditions. In that case, the validation of a generalized plan is as complex as the
synthesis of a classical plan. When actions have non-deterministic effects plan
validation becomes more complex since it requires proving that all the possible
plan executions reach the goals [14]. In such scenario model checking [16] and
non-deterministic planning are suitable approaches [38].

Unlike classical plans, that are tied to a particular planning instance, gener-
alized plans can also be executed on a set of different planning instances. The
validation of a generalized plan on a generalized planning task requires execut-
ing the plan in all the instances comprised in the task and verifying that the
plan solves them all. This means that the validation of a given generalized plan
in a given instance should be polynomial in the size of the plan to be effec-
tive. The execution of a generalized plan in a set of planning instances can be
implemented following two different approaches:

• Sequential, i.e. executing the generalized plan at each instance separately
one after the other. This is the approach followed for executing general-
ized plans using a classical planner that sequentially executes the plan in
each of the individual planning instances comprised in a given generalized
planning task [84].

• Parallel. The generalized plan is executed simultaneously in the set of
instances of a generalized planning task (like in conformant, contingent
or POMDP planning where the execution of an action progresses a set of
states [32]).

The implementation of the sequential approach is simpler but its utility is
limited by the number of instances. The parallel approach allows to handle
larger sets of instances (or instances with unbound number of objects) but it
requires elaborated state progression techniques, such as belief tracking [8] or
the application of action updates on abstract states [91]. Evaluating expressive
goals, or derived fluents, becomes more complex in a parallel execution since
it implies formulae evaluation over sets of states [32]. A third way to validate
generalized plans is to show that some property holds before and after execution,
like in program validation with Hoare triples [83].

4.3 Evaluation

Given a set of planning instances, different generalized plans can be consistent
with it, e.g. the different generalized plans shown in Figures 11, 12 and 14 can

21

unstack a tower of blocks of any height. It is then necessary to define methods
that quantify the aptitude of a given generalized plan to articulate preferences
among the possible solutions.

The aptitude of a generalized plan can be assessed with regard to different
metrics:

• Coverage. The domain coverage of a generalized plan can be assessed as
the ratio of the number of problem instances with size n that the gen-
eralized plan can solve, divided by the total number of solvable problem
instances with this same size [91]. In practice knowing these numbers im-
plies solving large sets of planning tasks, so it is often intractable. Statis-
tical Machine Learning (ML) techniques estimate the quality of a solution
according to how well the solution performs on a representative sample
of the domain instances, called test set [61]. In generalized planning one
could also define a test set of instances and count how many are cov-
ered by a solution. If we view a classical planner as a particular form of
a generalized plan, this is what is done at the sequential-optimal track
of the International Planning Competition (IPC) [96] where planners are
awarded according to the amount of unseen instances they solve.

• Complexity. Because generalized plans are algorithm-like solutions their
complexity can be theoretically assessed, e.g., using asymptotic analysis
that characterize how their running time and space requirements grow
according to the size of the input tasks. In practice the complexity of a
generalized plan can be quantified by the length of the sequence of actions
produced by the execution of the plan on a given input instance. Then
a generalized plan is optimal for a given instance when the length of this
sequence is minimum for that instance. This is somehow related to what
is done in the sequential-satisfying track of the IPC [96] where the final
value of a planner is reported as the accumulated quality of the solutions
in the instances of a testing set.

• Succinctness. The size of a given generalized plan can be assessed re-
garding to its number of program lines, controller states, policy rules or
quantified variables. Similar metrics were already introduced in ILP sys-
tems to quantify the compactness and readability of solutions and to prefer
models with the least number of rules and rules with the smallest size [63].
Note that in classical planning the execution complexity of a plan directly
corresponds to its size.

5 Computing Generalized Plans

This section describes the two main approaches for the computation of gen-
eralized plans and reviews different plan reuse techniques to avoid computing
generalized plans from scratch. The section ends reviewing particular imple-
mentations of different approaches for generalized planning.

22

5.1 Top-down/Bottom-up generalized planning

The top-down approach for generalized planning searches for a solution that
covers all the instances in the generalized planning task. On the other hand,
the bottom-up approach computes a solution to a single instance (or to a subsets
of the instances in the generalized planning task) and widens the coverage of the
solution until covering all the instances in the generalized planning task. With
respect to ML, the top-down approach relates to off-line ML algorithms that
compute a model to cover, in a single iteration, the full set of input instances,
e.g., the induction of decision trees [61]. The bottom-up approach is related to
the on-line versions of ML algorithms, that iterate to incrementally adapt the
model as more input instances are presented to the learning algorithm [95].

Top-down algorithms for generalized planning typically search for a solution
in the space of possible generalized plans. The initial state of this search is the
empty generalized plan and the search operators build a single step in the gener-
alized plan (e.g. adding an instruction to a program, a new state or transition to
a FSC, a new rule to a policy, etc). The set of goal states of the search includes
any state where the built generalized plan solves the given set of instances.

Examples of this approach are compilations of generalized planning into
other forms of problem solving such as classical planning [46], conformant plan-
ning [10], CSP [74] or a Prolog program [43]. These compilations implement
a search space as described above, and benefit from off-the-shelf solvers (with
efficient search algorithms and heuristics) to complete the search for a general-
ized plan. The main limitation of the compilation approach is scalability. In
practice, it is common to bound the size of the possible generalized plans (e.g.
the maximum number of program lines, controller states, policy rules or quan-
tified variables) with the aim of keeping the search tractable. This is similar to
what is done in SATPLAN approaches that fix a maximum plan length [78] and
iteratively increments it until a solution is found.

Off-line algorithms for contingent [1], conformant [69] and POMDP plan-
ning [32] can also be understood as top-down algorithms for generalized plan-
ning if we consider that the possible initial states represent different planning
instances all sharing the same goals. In this case the search for a solution is
not typically carried out in the space of possible generalized plans but in the
space of reachable belief states (a belief state is a probability distribution over
the states that are deemed possible). Here the scalability limitations come from
the fact that the set of reachable belief states grows quickly (it is then key to
exploit techniques for uncertainty reduction to keep the set of possible states
tractable) and from the difficulty of defining effective heuristics that provide
informative estimates with belief states.

Bottom-up generalized planning refers to an iterative and incremental ap-
proach where (1) a single planning instance (or a subset of the instances in
the generalized planning task) is chosen, (2) a solution to it is computed, (3)
generalized and finally (4), merged with the previously found and generalized
solutions. This four-step process is repeated until all the instances in the gen-
eralized planning task are covered. The bottom-up approach is related to plan

23

repair [26], case-based planning [11] and transfer learning [70] because it also
requires mechanisms to identify why a given solution does not cover a given in-
stance (in this case validation mechanisms for generalized plans are suitable to
find the cause of an assertion failure in a given plan [98]) as well as mechanisms
to adapt a given solution to a new scenario (this kind of adaptation mechanisms
are also present when planning with imperfect control knowledge [100]).

While top-down approaches can be implemented as compilations to other
forms of problem solving, bottom-up approaches require specific techniques to
lift and merge plans. On the other hand, bottom-up approaches provide anytime
behavior and may be able to automatically build a small set of instances that
achieve generalization [92].

5.2 Reusing generalized plans

An alternative to the computation of generalized plans starting from scratch is
to reuse existing solutions. Even when a certain generalized plan is unsound
(in the sense that it fails to solve a given instance) or incomplete (it does not
define the action to apply next for the given instance), it may contain useful
knowledge. For example, the plan may be able to solve a sub-problem of the
given generalized planning task, or similar instances (e.g. it is a solution but for
objects of a different type), or solve new instances after tuning the conditions
in the control-flow structures. In these cases adapting a previously existing
generalized plan can pay off.

With this regard, bottom-up approaches for generalized planning are equipped
with mechanisms to adapt a plan to unseen instances and incrementally increase
its coverage [92]. On the other hand, top-down approaches can start with a par-
tially specified solution instead of with the empty generalized plan. This has
shown useful to narrow the search space and/or focus the search process making
possible to address more challenging generalized planning tasks [84, 85].

Next, we review different techniques for reusing previously found plans:

• Compilations. When the existing generalized plan has the form of a gener-
alized policy it can be compiled into a set of PDDL derived predicates, one
for each rule in the policy, that captures the different situations where the
actions should be applied [45]. Figure 13 illustrated this approach showing
an example of PDDL derived predicates representing a 2-rule policy for
unstacking towers of blocks. Existing generalized plans in the form of pro-
grams, FSCs or AND/OR graphs, can be encoded into a classical PDDL
planning task by computing the cross product between the corresponding
automata and the original planning task [7, 84, 77]. In this case, new
extra state variables are added to the original planning task to represent
the states and transitions of the automata corresponding to the program,
FSC or AND/OR graph.

• Planning actions. Actions in classical planning do not only represent
primitive actions but can also represent a generalized plan themselves.

24

Figure 20 shows a classical planning action that corresponds to a general-
ized plan for unstacking any block in a blocksworld, i.e. the first step in
a general solution for solving any blocksworld instance.

(:action unstack-all

:parameters ()

:precondition (and)

:effect (and (forall (?x - block ?y - block)

(when (and (on ?x ?y))

(and (not (on ?x ?y))

(clear ?x)

(ontable ?x))))))

Figure 20: Action for unstacking all the blocks in a blocksworld task. The action is
encoded in PDDL using universally quantified variables and conditional effects.

The compilation of existing solutions into new planning actions is well-
studied for the particular case of macro-actions. A macro-action can be
viewed as a parameterized generalized plan, without control flow, that
can be reused in a straightforward way to enrich a domain theory (macro-
actions have the form of standard classical planning actions). Figure 21
shows the classical planning actions unstack and drop from the blocksworld
domain, for unstacking a block X from another block Y and for putting
a block X onto the table, as well as the macro-action unstack-drop re-
sulting from assembling them. The assembly of these two actions can
for example be computed following the early planning algorithm of the
triangle-table [25].

A limitation of macro-actions is that their structure is too rigid so many
generalized plans cannot be encoded as macro-actions. For instance, the
generalized plan introduced in Section 1 for solving any blocksworld in-
stance, cannot be encoded as a macro-action. Further research is necessary
to automatically compile arbitrary generalized plans into planning actions,
that can be directly included in a domain theory, without adding extra
state variables. Recent work on planning with simulators opens the door
to more effective approaches for reusing existing procedural solutions as
black-box actions [30].

• Domain-specific heuristics. Incorrect and/or incomplete generalized plans
have also been used to improve the performance of a classical planner
working as domain-specific heuristics [100, 21]. This approach is specially
useful at planning tasks where domain independent heuristics have flaws,
for example due to strong goal interactions.

25

;;; Primitive action

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (empty))

:effect (and (hold ?x) (clear ?y)

(not (clear ?x)) (not (empty)) (not (on ?x ?y))))

;;; Primitive action

(:action drop

:parameters (?x - block)

:precondition (hold ?x)

:effect (and (clear ?x) (empty) (ontable ?x)

(not (hold ?x))))

;;; Macro-action

(:action unstack-drop

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (empty))

:effect (and (clear ?y) (ontable ?x)

(not (on ?x ?y))))

Figure 21: Two primitive actions from the blocksworld described in PDDL and the
macro-action resulting from assembling them.

5.3 Implementations

Now we review particular approaches for generalized planning. We analyze how
they represent the tasks to solve, the representation of the generalized plans and
the algorithms for computing them.

5.3.1 Computing macro-actions

Macro-actions are one of the first suggestions to compute general knowledge
valid for solving different planning tasks [25]. There are diverse approaches in
the literature for computing macro-actions [12, 18, 47, 13] but the most common
approach is to: (1) solve a training set of classical planning instances that share
the same domain theory with an off-the-shelf classical planner and (2), identify,
in the solution plans, sub-sequences of actions that are frequently used together.

The strength of macro-actions is that they have the form of standard classical
planning actions so they can be added straightforward to the domain theory
without requiring extra state variables. This makes macro-actions a practical
and robust approach for reusing general planning knowledge: On the one hand,
either planning with macro-actions or the execution and validation of plans that
contain macro-actions do not require specific algorithms. On the other hand,
adding incomplete or incorrect macro-actions will not prevent a planner to find

26

a solution to a solvable task because the planner can always build a solution
using the original actions.

The main limitation of macro-actions for defining general planing strategies
is its sequential execution flow, that is too rigid. A solution involving macros
may not be applicable to other problems, even when macro-actions are param-
eterized.

5.3.2 Computing generalized policies

A generalized policy is a set of rules that defines a mapping of state and goals,
into the preferred action to execute next. Like macro-actions, generalized poli-
cies also allow parameters and can be induced from a set of solutions to classical
planning instances that share the same domain theory [57, 100, 21]. General-
ized policies are however more flexible than macro-actions since they can define
execution flows with branching and loops.

Computing a good generalized policy is complex and, nowadays, the success
of this approach is still limited to a reduced number of benchmarks. On the one
hand, correct and complete generalized policies are not computable for many
domains using the given representation for the states, actions and goals. In the
past, the limitations of the given representation language has been addressed
by hand-coding high-level state features that increase the expressiveness of the
given representation [48] or changing the representation language to reason bet-
ter about classes of objects [57, 24, 100]. On the other hand, the algorithms for
computing generalized policies traditionally consider planning and generaliza-
tion as two separated phases. This separation produces noisy examples difficult
to be generalized due to the high number of symmetries and transpositions that
typically appear in solution plans.

If a correct generalized policy is available, it can be added to a domain the-
ory using derived predicates that capture the states where an action should
be applied [45], as shown in Figure 13. If the policy is incomplete or incorrect,
adding it to the domain theory can turn solvable planning instances into unsolv-
able (adding the policy means adding new constraints to the original planning
task). A more robust approach to reuse imperfect policies is to consider them as
domain-specific heuristics that guide the search for a solution plan. Exploiting
policies in such way requires the modification of the planner [100, 21].

5.3.3 Computing Finite State Controllers

Finite State Controllers (FSCs) generalize policies with a finite amount of mem-
ory [9]. A FSC with a single state represents a policy, i.e. a memory-less con-
troller. The additional controller states of FSCs provide them with memory
that allows different actions to be taken given the same observation. The FSC
formalism can also be extended with a call stack to represent hierarchical and
recursive solutions [85].

The existing algorithms for computing FSCs for generalized planning follow
a top-down approach that interleaves programming the FSC with validating it

27

and hence, they tightly integrate planning and generalization. To keep the com-
putation of FSCs tractable, they limit the space of possible solutions bounding
the maximum size of the FSC. In addition, they impose that the instances to
solve share, not only the domain theory (actions and predicates schemes) but
the set of fluents [84] or a subset of observable fluents [10].

The computation of FSCs for generalized planning includes works that com-
pile the generalized planning task into another forms of problem solving so
they benefit from the last advances on off-the-shelf solvers (e.g. classical plan-
ning [84], conformant planning [10], CSP [74] or a Prolog program [43]). This
last case requires a behavior specification of the FSC consisting on classified
execution histories that (1) accept all legal execution histories leading to a
goal-satisfying state, and (2) reject those that contain repeated configurations
(indicating an infinite loop) and that cannot be extended (indicating a dead
end) [43].

5.3.4 Computing programs

Programs increase the readability of FSCs separating the control-flow structures
from the primitive actions. Like FSCs, programs can also be computed following
a top-down approach, e.g. exploiting compilations that program and validate the
program on instances with the same state and action space [84]. Since these
top-down approaches search in the space of solutions, it is helpful to limit the set
of different control-flow instructions. For instance using only conditional gotos
that can both implement branching and loops [46].

One of the first attempts to represent generalizes plans as programs are
DSPlanners [98, 99]. A DSPlanner is a domain-specific program that can con-
tain if-then-else and while constructs. These constructs branch and loop the
execution control flow of the program according to FOL queries on the current
state and/or the goals of the planning task.

The algorithm to compute DSPlanners is called Distill and implements
a bottom-up approach on a set of classical planning instances that share the
same domain theory. Given an instance, Distill computes a partially ordered
plan for that instance and integrates it into an existing DSPlanner as follows.
First, Distill lifts the partially ordered plan choosing a parameterization that
matches the existing DSPlanner. If no such parameterization exists, Distill
randomly assigns variable names to the objects in the plan. Then Distill
attempts to identify if statements and unrolled loop iterations in the solution to
replace them by the corresponding control-flow structure.

The work on generalized planning by Srivastava et al. introduces a pow-
erful and compact structure to programs, called choice actions, that combines
existential variables and control flow [91, 92]. Input instances in this work are
expressed as an abstract FOL representation with the transitive closure. This
formalism allows to represent planning tasks with an unbounded number of
objects and to guarantee the generalization of solutions for such tasks.

The generalized planning algorithm by Srivastava et al. implements also a
bottom-up strategy. The algorithm starts with an empty generalized plan, and

28

incrementally increases its coverage by identifying an instance that it cannot
solve, invoking a classical planner to solve that instance, generalizing the ob-
tained solution and merging it back into the generalized plan. The process is
repeated until producing a generalized plan that covers the entire desired class of
instances (or when a predefined limit of the computation resources is reached).

Both programs and FSCs can be compiled into a planing domain theory [7,
84, 85]. Like happens with policies, this compilation is safe (is not turning
solvable planning instances into unsolvable) when the given program (or FSC)
is correct.

Table 1 is a summary of the reviewed approaches for generalized planning.
The table indicates whether a given solution representation allows the use of
variables, the kind of control-flow and whether the execution of the solution
requires particular machinery.

Variables Control-flow Execution
Classical - - Ground actions
Plan
Macro-Actions Action parameters - Lifted actions
Generalized Rule parameters Branching and loops Lifted rules
Policy
DSPlanners Existential Branching and loops Lifted predicates

and lifted actions
FSCs Quantified Branching and loops Derived predicates
Hierarchical Quantified Branching, loops Derived predicates and
FSCs and parameters and call stack Parameter passing
Programs Quantified Branching, loops Derived predicates and

and parameters and call stack Parameter passing

Table 1: Summary of the diverse approaches for generalized planning according to
the solution representations.

6 Related work

Here we review other forms of planning and problem solving that are related to
the generalized planning approaches reviewed in the paper.

6.1 Planning under partial observability: Conformant, con-
tingent and POMDP planning

Conformant planning computes sequences of actions whose execution is consis-
tent with a set of different initial states [69]. The difference to the classical
planning model is the uncertainty in the initial state, which is described by
means of clauses. A conformant plan is a sequence of actions that solves all the
classical planning tasks given by the set of possible initial states that satisfy

29

these clauses. The execution of same sequence of actions can produce differ-
ent outcomes for different initial states because actions have conditional effects.
The main approaches for conformant planning are:

• Uncertainty reduction. Compiling the conformant planning into classical
planning to compute:

1. A plan prefix that removes any relevant uncertainty. In other words,
only a single state (or at least a single partial state for the subset of
state variables that are relevant for achieving the goals) is possible
after the prefix application [69].

2. A plan postfix that transforms the state (or partial state), where the
relevant uncertainty is removed, into a state that achieves the goals
of the conformant planning task.

• Belief propagation. Searching in the space of belief states where: the
root belief state represents the set of possible initial states and the goals
are the belief states s.t., all the possible states in the belief state satisfy
the goal condition of the planning task [39, 15]. While the previous ap-
proach leverages the classical planning machinery, this approach requires
(1) mechanisms for the compact representation and update of beliefs states
and (2), effective heuristics to guide the search in the space of belief states.

Contingent planning extends the conformant planning model with a sensing
model. This sensing model is a function that maps state-action pairs (the true
state of the system and the last action done) into a non-empty set of observa-
tions [1, 2]. Observations provide only partial information about the true state
of the system because the same observation may be possible in different states.
A contingent plan must satisfy that:

• Its execution reaches a goal belief state (all the states in the belief satisfy
the goal condition of the planning task) in a finite number of steps.

• The conditions for branching and looping refer to the observations (or the
subset of state variables that are observable).

Like generalized plans, contingent plans can have different forms such as policies,
AND/OR graphs, FSCs, or programs [10].

POMDP planning extends the contingent planning model allowing to encode
uncertainty through probability distributions, rather than with sets of possible
initial states and with sets of possible observations [32]. With this regard,
the Bayes’ rule is used to update belief states after an action application or
after an observation of the current state. The aim of a POMDPs solution is
to maximize the expected cost to the goals, so POMDP planning becomes an
optimization task. An optimal conformant/contingent/POMDP plan is the one
that minimizes the cost of achieving the goals in the worst case.

Generalized planning can be seen as a particular example of contingen-
t/POMDP planning: (1), the initial states and goals of the different instances

30

comprised in a generalized planning task can be encoded as the different possible
initial states of a POMDP task and (2), our definition of generalized planning as-
sumed deterministic actions and full observability (the conditions for branching
and looping can refer to the value of any state variable).

6.2 Planning with control knowledge

Since the beginning of research in planning, control knowledge has shown ef-
fective to improve the scalability of planners [5, 66]. This was evidenced at
IPC-2002 where planners exploiting Domain-specific Control Knowledge (DCK)
performed orders of magnitude faster than state-of-the-art planners [54].

Algorithm-like representations of DCK [7] bear strong resemblances with
generalized plans. Indeed both DCK and generalized plans represent general
strategies that are valid for solving different planning instances. Despite the
distinction between them is thin, one can claim that a generalized plan is a fully
specified solution, that does not require a planner to be applied in a particular
instance. On the other hand DCK corresponds to partially specified solutions
(contain non-deterministic constructs and missing/open segments to be deter-
mined by a planner at the time of the plan generation). Therefore DCK requires
a planner to produce a fully specified solution to a given classical planning in-
stance.

A different approach to define DCK is with a data-base of solved instances.
In fact an alternative view of a generalized plan is as a compact library of plans.
Case-Based Planning (CBP) is the approach to automated planning that aims
saving computational effort by reusing previously found solutions [11]. A CBP
system implements retrieval mechanisms that identify instances similar to the
one to solve as well as adaptation mechanisms that repair flaws in a retrieved
solution to make it applicable to another instance. Retrieval and adaptation
mechanisms of CBP are relevant to bottom-up algorithms for generalized plan-
ning since they identify when a given generalized plan does not cover an instance
and adapt the plan to cover it [98, 91]. The development of such mechanisms for
large case libraries following a domain-independent approach is still a challenge.

Another formalism for representing and exploiting DCK is hierarchical plan-
ning. Like classical planning, hierarchical planning deals with deterministic and
fully observable planning tasks but uses a different task representation. While
in classical planning actions are characterized in terms of their pre and postcon-
ditions, and their choice and ordering is computed automatically by a planner,
hierarchical planning specifies a sketch of the solution with extra information
about (1) which subgoal to pursue [88], and/or (2) which actions can be applied
for achieving a given subgoal [66].

In hierarchical planning the separation between the representation of the
task to be solved and the strategy for solving it is not as clear as in classical
planning. A hierarchical planning task can be understood as a partially specified
generalized plan (or a domain-specific planner) where the missing parts of the
plan are determined during its execution, by running a hierarchical planner.
While a classical planner aims to compute a sequence of applicable actions

31

that transforms a given initial state into a goal state, the hierarchical planner
computes a sequence of applicable actions that: (1) transforms a given initial
state into a goal state and (2), this transformation is compliant with the given
hierarchy.

6.3 GOLOG

The Golog family of action languages has proven to be a useful mean for the
high-level control of autonomous agents [53]. Apart from conditionals, loops and
recursive procedures, an interesting feature of Golog programs is that they can
contain non-deterministic parts. A Golog program does not need to represent a
fully specified solution, but a sketch of it, where the non-deterministic parts are
gaps to be filled by the system. This feature provides the Golog programmer
with the flexibility to chose the right balance between:

• Determine predefined behavior, which normally implies larger programs.

• Leave certain parts to be solved by the system by means of search, which
normally implies larger computation times.

The basic Golog interpreter uses the PROLOG back-tracking mechanism
to resolve the search. This mechanism basically amounts to do a blind search
so, when addressing planning tasks, it soon becomes unfeasible for all but the
smallest instance sizes. IndiGolog [81] extends Golog to contain a num-
ber of built-in planning mechanisms. Furthermore the semantics compatibility
between Golog and PDDL [80] can be exploited and a PDDL planner can be
embedded [17] to address the sub-problems that are combinatorial in nature.

6.4 Program synthesis

Program synthesis is the task of automatically generating a program that sat-
isfies a given high-level specification. Many ideas from this research field are
relevant to generalized planning but they are not immediately applicable since
generalized planning follows a domain-independent approach and handles its
own specific representation for states, actions and goals. Here we review two of
the most successful approaches for program synthesis:

• Programming by Example (PbE), computes a set of programs consis-
tent with a given set of input-output examples. Input-output examples are
intuitive for non-programmers to create programs moreover, this type of
specification makes program synthesis more tractable than reasoning with
abstract program states. PbE techniques have already been deployed in
the real world and are part of the Flash Fill feature of Excel in Office
2013 that generates programs for string transformation [35]. In this case
the set of synthesized programs are represented succinctly in a restricted
Domain-Specific Language (DSL) using a data-structure called version
space algebras [60]. The programs are computed with a domain-specific
search that implements a divide and conquer approach.

32

• In Programming by Sketching (PbS) programmers provide a par-
tially specified program, i.e. a program that expresses the high-level struc-
ture of an implementation but that leaves low level details undefined to
be determined by the synthesizer [90]. This form of program synthesis
relies on a programming language called SKETCH, for sketching par-
tial programs. PbS implements a counterexample-driven iteration over a
synthesize-validate loop built from two communicating SAT solvers, the
inductive synthesizer and the validator, to automatically generate test
inputs and ensure that the program satisfy them. Despite, in the worst
case, program synthesis is harder than NP-complete, this counterexample-
driven search terminates on many real problems after solving only a few
SAT instances [50].

7 Conclusions

Generalized plans are able to solve planning tasks beyond the scope of classical
planning: they can address planning tasks that comprise multiple instances or
with an unbound number of objects, as well as planning tasks with partial ob-
servability and non-deterministic actions [10, 44, 92, 43]. Generalized planning
is then a promising paradigm for problem solving but further research is needed
to effectively address arbitrary planning tasks.

• Representation of generalized planning tasks. Implicit representations al-
low to handle large sets of planning instances. However these represen-
tations require specific mechanisms for state progression, as well as for
testing goals and action preconditions, that are different from the ones
traditionally implemented in off-the-shelf planners.

Apart from the representation formalism, the given set of instances in
a generalized planning task affects to the performance of the different
approaches for computing a plan that generalizes. Sometimes small sets
of representative instances can be built using corner cases. Corner cases
push state variables to their minimum or maximum value so the plan
behavior, is only considered on those specific states as opposed to consider
all the possible input instances. For the general case, it is complex to
automatically identify a small number of representative instances so often,
the selection of representative instances in a generalized planning task, is
still done by hand.

A first step towards automatically determining the instances to compute
a solution that generalizes is characterizing the conditions under which a
policy generalizes to other problems [9]. This approach opens the door to
the development of methods for automatically generating the simplest set
of instances that is required to compute a solution that generalizes.

• Computation of generalized plans. Current algorithms for generalized
planning are only able to address relatively small tasks. Further research

33

on specific heuristics for generalized planning, the automatic identification
of relevant state variables (e.g. finding the subset of state variables that
could appear in the conditions of the loops and branches) or the automatic
serialization of goals, can help to increase the scalability of generalized
planners.

Domain specific decompositions allow also to address more challenging
generalized planning tasks [84]. Unfortunately these decompositions are
currently done by hand and it is still an open issue how to automatically
compute them from the representation of the generalized planning task.
With this regard, planning landmarks can be an interesting research direc-
tion [40]. An alternative work-line to improve the scalability of generalized
planners is to explore the transformation of a given planning task into a
smaller one that (1), is solvable by the same generalized plan and (2), has
a more tractable search space [9].

With regard to the reuse of generalized plans, key issues are the evalu-
ation of the suitability of a given generalized plan for a given planning
instance (like similarity metrics from case-based planning), and the reuse
of incomplete or incorrect generalized plans. In this case, reusing existing
generalized plans as domain-specific heuristics or preferences, is a safer
approach that forcing to follow the generalized plans at every moment.

• Representation of generalized plans. Generalized plans that include vari-
ables and control-flow require more sophisticated execution mechanisms
than a plan that just comprises a sequence of ground actions but, they
may be able to represent more tasks. The same claim applies for partially
specified solutions (whose execution is more complex because it requires
a planner) with respect to fully specified solutions. Given a generalized
planning task, identifying the kind of solution that is more suitable for
solving it, is also an open issue.

The computation of a generalized plan is constrained by the given in-
stances in the generalized planning task but also by the given represen-
tation for coding the states, actions and goals. The automatic derivation
of alternative representations that allow more effective computation of
generalized plans is a promising research direction with multiple links to
previous research on AI such as ILP predicate invention [19] or feature
generation in ML.

Last but not least, generalized plans are generative models that can address
tasks beyond planning. For instance, given a generalized plan and an execution
trace, the parsing task can be defined as the task of determining whether that
execution trace could be generated with the given generalized plan. This ap-
proach is useful for object classification [55] but also for goal recognition [76]
and task classification [87]. Furthermore, solutions to these tasks can be im-
plemented with techniques very similar to the ones used for the computation
of generalized plans. With this same regard, there are previous works using
programming by example techniques to synthesize a parser from input/output

34

examples [51]. This task have been addressed with classical planning for small
context free grammars [86] however, further research has to be done for building
more challenging parsers.

Acknowledgment

This work is partially supported by grant TIN-2015-67959 and the Maria de Maeztu

Units of Excellence Programme MDM-2015-0502, MEC, Spain. Sergio Jiménez is

supported by the Ramon y Cajal program, RYC-2015-18009, funded by the Spanish

government.

35

The blocksworld domain

PDDL code for a four-operator blocksworld domain.

;;

;;; 4 Op-blocks world

;;

(define (domain BLOCKS)

(:requirements :strips)

(:predicates (handempty) (holding ?x) (clear ?x)

(ontable ?x) (on ?x ?y))

(:action pick-up

:parameters (?x)

:precondition (and (ontable ?x) (clear ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

(:action put-down

:parameters (?x)

:precondition (holding ?x)

:effect (and (not (holding ?x)) (clear ?x) (handempty)

(ontable ?x)))

(:action stack

:parameters (?x ?y)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y)))

(:action unstack

:parameters (?x ?y)

:precondition (and (on ?x ?y) (clear ?x) (handempty))

:effect (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y)))))

36

References

[1] Alexandre Albore, Héctor Palacios, and Hector Geffner. A translation-
based approach to contingent planning. In IJCAI, 2009.

[2] Alexandre Albore, Miquel Ramı́rez, and Hector Geffner. Effective heuris-
tics and belief tracking for planning with incomplete information. In
ICAPS, 2011.

[3] Ronald Alford, Ugur Kuter, and Dana S Nau. Translating htns to pddl:
A small amount of domain knowledge can go a long way. In IJCAI, 2009.

[4] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Ab hishek Udupa. Syntax-guided synthesis. Depend-
able Software Systems Engineering, 40:1–25, 2015.

[5] Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial Intelligence, 116(1):123–
191, 2000.

[6] Christer Bäckström, Anders Jonsson, and Peter Jonsson. Automaton
plans. Journal of Artificial Intelligence Research, 51:255–291, 2014.

[7] Jorge A Baier, Christian Fritz, and Sheila A McIlraith. Exploiting proce-
dural domain control knowledge in state-of-the-art planners. In ICAPS,
2007.

[8] Blai Bonet and Hector Geffner. Belief tracking for planning with sensing:
Width, complexity and approximations. Journal of Artificial Intelligence
Research, 50:923–970, 2014.

[9] Blai Bonet and Hector Geffner. Policies that generalize: Solving many
planning problems with the same policy. IJCAI, 2015.

[10] Blai Bonet, Héctor Palacios, and Hector Geffner. Automatic derivation of
finite-state machines for behavior control. In AAAI, 2010.

[11] Daniel Borrajo, Anna Roub́ıčková, and Ivan Serina. Progress in case-based
planning. ACM Computing Surveys (CSUR), 47(2):35, 2015.

[12] Adi Botea, Markus Enzenberger, Martin Mller, and Jonathan Schaef-
fer. Macro-ff: Improving ai planning with automatically learned macro-
operators. Journal of Artificial Intelligence Research, 24:581–621, 2005.

[13] Lukás Chrpa. Generation of macro-operators via investigation of action
dependencies in plans. The Knowledge Engineering Review, 25(3):281–
297, 2010.

37

[14] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.
Weak, strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence, 147(1-2):35–84, 2003.

[15] Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli. Conformant
planning via symbolic model checking and heuristic search. Artificial In-
telligence, 159(1-2):127–206, 2004.

[16] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT press, 1999.

[17] Jens Claßen, Viktor Engelmann, Gerhard Lakemeyer, and Gabriele Röger.
Integrating golog and planning: An empirical evaluation. In Non-
Monotonic Reasoning Workshop, 2008.

[18] Andrew Coles and Amanda Smith. Marvin: A heuristic search planner
with online macro-action learning. Journal of Artificial Intelligence Re-
search, 28:119–156, 2007.

[19] Mark Craven and Seán Slattery. Relational learning with statistical predi-
cate invention: Better models for hypertext. Machine Learning, 43(1):97–
119, 2001.

[20] Stephen Cresswell and Alexandra M. Coddington. Compilation of ltl goal
formulas into pddl. In ECAI, 2004.

[21] Tomas De la Rosa, Sergio Jiménez, Raquel Fuentetaja, and Daniel Bor-
rajo. Scaling up heuristic planning with relational decision trees. Journal
of Artificial Intelligence Research, 40:767–813, 2011.

[22] Carmel Domshlak. Fault tolerant planning: Complexity and compilation.
In ICAPS, 2013.

[23] Alan Fern, Roni Khardon, and Prasad Tadepalli. The first learning track
of the international planning competition. Machine Learning, 84(1-2):81–
107, 2011.

[24] Alan Fern, Sungwook Yoon, and Robert Givan. Approximate policy it-
eration with a policy language bias: Solving relational markov decision
processes. Journal of Artificial Intelligence Research, 25:75–118, 2006.

[25] Richard E Fikes, Peter E Hart, and Nils J Nilsson. Learning and executing
generalized robot plans. Artificial intelligence, 3:251–288, 1972.

[26] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability:
Replanning versus plan repair. In ICAPS, 2006.

[27] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of Artificial Intelligence Research,
20:61–124, 2003.

38

[28] Guillem Francès and Hector Geffner. Modeling and computation in plan-
ning: Better heuristics from more expressive languages. In ICAPS, 2015.

[29] Guillem Francès and Hector Geffner. E-strips: Existential quantification
in planning and constraint satisfaction. In IJCAI, 2016.

[30] Guillem Frances, Miquel Ramırez, Nir Lipovetzky, and Hector Geffner.
Purely declarative action representations are overrated: Classical planning
with simulators. In IJCAI, 2017.

[31] Christian Fritz, Jorge A Baier, and Sheila A McIlraith. Congolog, sin
trans: Compiling congolog into basic action theories for planning and
beyond. In KR, 2008.

[32] Hector Geffner and Blai Bonet. A concise introduction to models and
methods for automated planning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 8(1):1–141, 2013.

[33] Alfonso Gerevini and Derek Long. Plan constraints and preferences in
pddl3. The Language of the Fifth International Planning Competition.
Tech. Rep. Technical Report, Department of Electronics for Automation,
University of Brescia, Italy, 75, 2005.

[34] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:
theory and practice. Elsevier, 2004.

[35] Sumit Gulwani. Automating string processing in spreadsheets using input-
output examples. In ACM SIGPLAN Notices, volume 46, pages 317–330.
ACM, 2011.

[36] Sumit Gulwani, Jose Hernandez-Orallo, Emanuel Kitzelmann, Stephen H
Muggleton, Ute Schmid, and Benjamin Zorn. Inductive programming
meets the real world. Communications of the ACM, 58:90–99, 2015.

[37] Malte Helmert. The Fast Downward Planning System. Journal of Artifi-
cial Intelligence Research, 26:191–246, 2006.

[38] Jörg Hoffmann. Simulated penetration testing: From dijkstra to turing
test++. In ICAPS, 2015.

[39] Jörg Hoffmann and Ronen I Brafman. Conformant planning via heuristic
forward search: A new approach. Artificial Intelligence, 170(6-7):507–541,
2006.

[40] Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks
in planning. Journal of Artificial Intelligence Research, 22:215–278, 2004.

[41] Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan val-
idation, continuous effects and mixed initiative planning using pddl. In
ICTAI, 2004.

39

[42] Yuxiao Hu and Giuseppe De Giacomo. Generalized planning: Synthesizing
plans that work for multiple environments. In IJCAI, 2011.

[43] Yuxiao Hu and Giuseppe De Giacomo. A generic technique for synthesiz-
ing bounded finite-state controllers. In ICAPS, 2013.

[44] Yuxiao Hu and Hector J. Levesque. A correctness result for reasoning
about one-dimensional planning problems. In IJCAI, 2011.

[45] Franc Ivankovic and Patrik Haslum. Optimal planning with axioms. In
IJCAI, 2015.

[46] Sergio Jiménez and Anders Jonsson. Computing Plans with Control Flow
and Procedures Using a Classical Planner. In SOCS, 2015.

[47] Anders Jonsson. The role of macros in tractable planning. Journal of
Artificial Intelligence Research, pages 471–511, 2009.

[48] Roni Khardon. Learning action strategies for planning domains. Artificial
Intelligence, 113(1):125–148, 1999.

[49] Andrey Kolobov. Planning with markov decision processes: An ai perspec-
tive. Synthesis Lectures on Artificial Intelligence and Machine Learning,
6(1):1–210, 2012.

[50] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.
Human-level concept learning through probabilistic program induction.
Science, 350(6266):1332–1338, 2015.

[51] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthesis
by example. In ACM SIGPLAN Notices, volume 50, pages 565–574. ACM,
2015.

[52] Hector J. Levesque. Planning with loops. In IJCAI, 2005.

[53] Hector J Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and
Richard B Scherl. Golog: A logic programming language for dynamic
domains. The Journal of Logic Programming, 31(1-3):59–83, 1997.

[54] Derek Long and Maria Fox. The 3rd international planning competition:
Results and analysis. Journal of Artificial Intelligence Research, 20:1–59,
2003.

[55] Damir Lotinac, Javier Segovia-Aguas, Sergio Jiménez, and Anders Jon-
sson. Automatic generation of high-level state features for generalized
planning. In IJCAI, 2016.

[56] Bhaskara Marthi, Stuart J Russell, and Jason Andrew Wolfe. Angelic
semantics for high-level actions. In ICAPS, 2007.

40

[57] Mario Mart́ın and Hector Geffner. Learning generalized policies from
planning examples using concept languages. Applied Intelligence, 20(1):9–
19, 2004.

[58] Mausam and Andrey Kolobov. Planning with markov decision processes:
an ai perspective. Morgan & Claypool Publishers, 2012.

[59] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the plan-
ning domain definition language. 1998.

[60] Thomas M Mitchell. Generalization as search. Artificial intelligence,
18:203–226, 1982.

[61] Thomas M Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997.

[62] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-level control through deep re-
inforcement learning. Nature, 518(7540):529–533, 2015.

[63] Stephen Muggleton. Inductive logic programming: issues, results and the
challenge of learning language in logic. Artificial Intelligence, 114(1):283–
296, 1999.

[64] Christian Muise, Sheila A. McIlraith, and Vaishak Belle. Non-
deterministic planning with conditional effects. In ICAPS, 2014.

[65] Christian J Muise, Vaishak Belle, and Sheila A McIlraith. Computing
contingent plans via fully observable non-deterministic planning. In AAAI,
2014.

[66] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Mur-
dock, Dan Wu, and Fusun Yaman. Shop2: An htn planning system.
Journal of Artificial Intelligence Research, 20:379–404, 2003.

[67] Bernhard Nebel. On the compilability and expressive power of propo-
sitional planning formalisms. Journal of Artificial Intelligence Research,
12:271–315, 2000.

[68] Allen Newell, JC Shaw, and Herbert A Simon. A general problem-solving
program for a computer. Computers and Automation, 8(7):10–16, 1959.

[69] Héctor Palacios and Hector Geffner. Compiling uncertainty away in con-
formant planning problems with bounded width. Journal of Artificial
Intelligence Research, 35:623–675, 2009.

[70] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

41

[71] Edwin PD Pednault. Adl: Exploring the middle ground between strips
and the situation calculus. KR, 1989.

[72] Ronald PA Petrick and Fahiem Bacchus. Extending the knowledge-based
approach to planning with incomplete information and sensing. In ICAPS,
2004.

[73] Aldo Porco, Alejandro Machado, and Blai Bonet. Automatic polytime
reductions of np problems into a fragment of strips. In ICAPS, 2011.

[74] Cédric Pralet, Gérard Verfaillie, Michel Lemâıtre, and Guillaume Infantes.
Constraint-based controller synthesis in non-deterministic and partially
observable domains. In ECAI, 2010.

[75] J. Ross Quinlan. Learning logical definitions from relations. Machine
learning, 5:239–266, 1990.

[76] Miquel Ramı́rez and Hector Geffner. Probabilistic plan recognition using
off-the-shelf classical planners. In AAAI, 2010.

[77] Miquel Ramirez and Hector Geffner. Heuristics for planning, plan recog-
nition and parsing. arXiv preprint arXiv:1605.05807, 2016.

[78] Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelli-
gence Journal, 193:45–86, December 2012.

[79] Jussi Rintanen. Impact of modeling languages on the theory and practice
in planning research. In AAAI, pages 4052–4056, 2015.

[80] Gabriele Röger, Malte Helmert, and Bernhard Nebel. On the relative
expressiveness of adl and golog: The last piece in the puzzle. In KR, 2008.

[81] Sebastian Sardina, Giuseppe De Giacomo, Yves Lespérance, and Hector J
Levesque. On the semantics of deliberation in indigologfrom theory to
implementation. Annals of Mathematics and Artificial Intelligence, 41(2-
4):259–299, 2004.

[82] Enrico Scala, Miquel Ramirez, Patrik Haslum, and Sylvie Thiebaux. Nu-
meric planning with disjunctive global constraints via smt. In ICAPS,
2016.

[83] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok Yang.
Nested hoare triples and frame rules for higher-order store. In Interna-
tional Workshop on Computer Science Logic, 2009.

[84] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generalized
planning with procedural domain control knowledge. In ICAPS, 2016.

[85] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Hierarchical
finite state controllers for generalized planning. In IJCAI, 2016.

42

[86] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generating
context-free grammars using classical planning. In IJCAI, 2017.

[87] Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Unsupervised
classification of planning instances. In ICAPS, 2017.

[88] Vikas Shivashankar, Ugur Kuter, Dana Nau, and Ron Alford. A hierar-
chical goal-based formalism and algorithm for single-agent planning. In
AAMAS, 2012.

[89] John Slaney and Sylvie Thiébaux. Blocks world revisited. Artificial In-
telligence, 125(1):119–153, 2001.

[90] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,
and Vijay Saraswat. Combinatorial sketching for finite programs. ACM
SIGOPS Operating Systems Review, 40:404–415, 2006.

[91] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. A new
representation and associated algorithms for generalized planning. Artifi-
cial Intelligence, 175(2):615 – 647, 2011.

[92] Siddharth Srivastava, Neil Immerman, Shlomo Zilberstein, and Tianjiao
Zhang. Directed search for generalized plans using classical planners. In
ICAPS, 2011.

[93] Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of pddl
axioms. Artificial Intelligence, 168(1):38–69, 2005.

[94] Emina Torlak and Rastislav Bodik. Growing solver-aided languages with
rosette. In ACM international symposium on New ideas, new paradigms,
and reflections on programming & software, pages 135–152. ACM, 2013.

[95] Paul E Utgoff. Incremental induction of decision trees. Machine learning,
4(2):161–186, 1989.

[96] Mauro Vallati, Lukáš Chrpa, Marek Grzes, Thomas L McCluskey, Mark
Roberts, and Scott Sanner. The 2014 international planning competition:
Progress and trends. AI Magazine, 36(3):90–98, 2015.

[97] Manuela Veloso, Jaime Carbonell, Alicia Perez, Daniel Borrajo, Eugene
Fink, and Jim Blythe. Integrating planning and learning: The prodigy
architecture. Journal of Experimental & Theoretical Artificial Intelligence,
7(1):81–120, 1995.

[98] Elly Winner and Manuela Veloso. Distill: Learning domain-specific plan-
ners by example. In ICML, 2003.

[99] Elly Winner and Manuela Veloso. Loopdistill: Learning looping domain-
specific planners from example plans. In ICAPS, Workshop on Artificial
Intelligence Planning and Learning, 2007.

43

[100] Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowl-
edge for forward search planning. The Journal of Machine Learning Re-
search, 9:683–718, 2008.

[101] H̊akan LS Younes and Michael L Littman. Ppddl1. 0: An extension to
pddl for expressing planning domains with probabilistic effects. Techn.
Rep. CMU-CS-04-162, 2004.

44

