
Capturing knowledge about the instances
behavior in probabilistic domains

Sergio Jiménez, Fernando Fernández?, and Daniel Borrajo

Departamento de Informática
Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
sjimenez@inf.uc3m.es, ffernand@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract. When executing plans in the real world, a plan that the-
oretically solves a problem, can fail because of special features of an
object were not properly captured in the initial domain representation.
We propose to capture this uncertainty about the world repeating cycles
of planning, execution and learning. In this paper, we describe the Plan-
ning, Execution and Learning (PEL) Architecture that generates plans,
executes those plans using the simulator of the International Planning
Competition, and automatically acquires knowledge about the behaviour
of the objects to strengthen future execution processes.

1 Introduction

Suppose you have just been engaged as a project manager in an organization
and you are in charge of two programmers, A and B. Theoretically A and B
can do the same work, but probably they will have different skills. As you “a
priori” don’t know them, it would be common sense to evaluate their work in
order to assign them tasks according to their worth. So, when you have to de-
cide how to assign tasks to the programmers, you will only take into account
which worker performs which task, that is how actions are instantiated because
the values of their skills are unknown. Otherwise, they could be modeled in the
initial state. For instance, one could represent the level of expertise of program-
mers, as a predicate expertise-level(programmer,task,prob) where prob could be
a number, reflecting the probability of the task to be carried out successfully by
the programmer.

Traditionally, two communities have been working in the field of planning in
environments where there is incomplete or faulty information: One community
consists of Markov Decision Process researchers [1] interested in developing al-
gorithms that apply to powerfully expressive representations of environments.
And the other community consists of planning researchers incorporating proba-
bilistic and decision theoretic concepts into their planning algorithms [2]. Both
approaches suppose we have at our disposal a representation of the action model
? Fernando Fernández is currently working with the Computer Science Department

Carnegie Mellon University, funded by a MEC-Fullbright gant



2

with the exact probabilities of every action effect. But in fact, there are very few
real domains where this happens. So it is necessary to have a preceding phase
where the systems learn these probabilities. In [3], it is proposed to obtain the
world dynamics by learning from examples representing action models as proba-
bilistic relational rules. A similar approach was previously used in propositional
logic in [4]. In [5] it is proposed to used Adaptive Dynamic Programming,
which allows reinforcement learning agents to build the transition model of an
unknown environment whereas the agent is solving the Markov Decision Process
through exploring the transitions.

With an architecture that integrates planning, execution and learning [6] we
want to achieve a system able to capture some uncertainty about the success of
action execution, as Reinforcement Learning [7] does, but also able to manage
a rich representation of the action model. Thus, the architecture can be used
for flexible kinds of goals as in deliberative planning, together with knowledge
about the expected future effects.

2 Capturing instances behavior

The Planning, Execution and Learning architecture assumes there is no “a pri-
ori” knowledge about the special features of the objects that can influence the
success in executing actions, and tries to capture this uncertainty repeating cy-
cles of planning, execution and learning. Figure 1 show a high level view of the
Planning, Execution and Learning Architecture.

Fig. 1. High level view of the planning-execution-learning architecture.

The proposed architecture starts with a deterministic description of the world
dynamics and plans to solve problems using this description. Once it has found a



3

plan that theoretically would solve the problem, it tries to execute it in the real
world action by action. After every execution of an action the system observes
the new state of the real world and learns. It learns whether the execution of the
action was a success or a failure, that is, whether the effects caused the execution
of the action in the real world are the theoretically expected or not. The learnt
information is stored in a table. This table that we call the robustness table,
registers an estimation of the probability of success in executing an action in the
real world. Table 1 is an example of a robustness table for a three blocks and two
operators blocksworld domain.

Action Parameters Robustness

pick-up-block-from (block0 table) 0.945
pick-up-block-from (block1 table) 0.654
pick-up-block-from (block2 table) 0.83
put-down-block-on (block0 table) 0.2534
put-down-block-on (block1 table) 0.744
put-down-block-on (block2 table) 0.753
pick-up-block-from (block1 block0) 0.43
pick-up-block-from (block2 block0) 0.85
put-down-block-on (block1 block0) 0.36
put-down-block-on (block2 block0) 0.42
pick-up-block-from (block0 block1) 0.43
pick-up-block-from (block2 block1) 0.85
put-down-block-on (block0 block1) 0.36
put-down-block-on (block2 block1) 0.154
pick-up-block-from (block0 block2) 0.27
pick-up-block-from (block1 block2) 0.45
put-down-block-on (block0 block2) 0.32
put-down-block-on (block1 block2) 0.265

Table 1. An example of a Robustness Table for a a three blocks and two operators
blocksworld domain.

To use this information, the system automatically generates control knowl-
edge that decides the instantiation of the actions. So, when the planner has
to decide which binding to use for a given action, it will choose the best one
according to the acquired robustness knowledge.

2.1 Planning

For the planning task we have used the non-linear backward chaining planner
IPSS [8]. The inputs to the planner are the usual ones (domain theory and
problem definition), plus declarative control knowledge, described as a set of
control rules. These control rules act as domain dependent heuristics, and they
are the main reason we have used this planner, given that they provide an easy



4

method for declarative representation of automatically acquired knowledge. The
IPSS planning-reasoning cycle involves as decision points: select a goal from the
set of pending goals and subgoals; choose an operator to achieve a particular goal;
choose the bindings to instantiate the chosen operator; and apply an instantiated
operator whose preconditions are satisfied; or continue subgoaling on another
unsolved goal. The planner is executed with control rules that make the planner
prefer the more robust bindings for an action in order to guide the planner
towards solutions that guarantee successful execution of plans according to the
acquired knowledge on robustness. The output of the planner, as we have used
it in this paper, is a totally-ordered plan.

2.2 Execution

The executor module receives the sequence of actions proposed by the planner
to solve a problem and tries to execute it step by step. When the execution of
an action in the real world is a failure, the executor will wait till the planner
develops a new plan for solving the problem in the new situation (replaning).
An action execution is considered a failure when it causes a new state different
from the expected state according to the deterministic domain and moreover the
proposed plan is not yet valid to reach the solution from this new state.

2.3 Learning

The learning process lies in the updating of the robustness table (table 1). This
table registers the estimation of the probability of success in executing instanti-
ated actions in the real world. Each register of the table is a tuple of the form
(op-name, op-params, r-value), where op-name is the name of the action,
op-params is the list of the instantiated parameters and r-value is the robust-
ness value. So, the number of different instantiated actions determines the size
of the robustness table. This number can be computed:

Instances =
N∑

i=1

arguments(i)∏
j=1

instances(i, j)

where N is the number of operators, arguments(i) is the number of arguments
of the operator i and instances(i,j) is a function that computes the number
of different values that the argument j can take in the operator i.

In this work, as the probabilities of the actions we want to estimate don’t vary
with time, a very simple statistical algorithm is enough to update the robustness
table. In this case, the robustness value of an action symbolizes the frequency
of successful executions of the action. If the probabilities of the action’s effects
would vary with time, a more complex learning strategy will be needed, such as

robustness(t + 1) = α ∗ robustness(t) + (1− α) ∗ robustness(t− 1)

where α means the significance of the recent executions.



5

3 Experiments and Results

The final aim of the carried out experiments is to analyze the correction of the
estimation of the action robustness we get using the proposed architecture. To
test the architecture, we simulate the actions instead of executing them in the
real world. Specifically, we have used the simulator provided by the last Inter-
national Planning Competition (IPC)1, to evaluate probabilistic planners. This
simulator uses PPDDL 1.0 [9] to describe the world we want to simulate. This
language based on PDDL 2.1., allows us to describe actions with probabilistic
and conditional effects. The task of this IPC simulator in our architecture is
to keep a representation of the simulated current state and to update it when
it receives an action from the executor module. Figure 2 shows how the IPC
simulator is integrated into our architecture.

Fig. 2. High level view of the planning-execution-learning architecture integrated with
the simulator of the IPC probabilistic track.

We have performed the experiments in the blocksworld domain from the
probabilistic track of the IPC, we have modified the probabilities of the effects
of the operators pick-up in order to get a domain a bit more complex where the
frequency of success of the action depends on the instantiation of the operators.
Thus, each block has a different behavior when they are picked-up or put-down.
In these experiments, our system will try to solve problems of different complex-
ity. Our system will use a deterministic domain description where all the blocks
are initially the same and will try to estimate the probability of success in exe-
cuting the actions learning from its own experience. To evaluate the correction
of the estimation of the action robustness we will measure the mean quadratic
error between the estimation of our system and the real values.

1 http://ipc.icaps-conference.org/



6

Fig. 3. Evolution of the error in estimating
actions robustness with 5 different blocks

Fig. 4. Evolution of the error in estimating
actions robustness with 8 different blocks

Fig. 5. Evolution of the error in estimating actions robustness with 11 different blocks

Figure 3 shows the evolution of the mean quadratic error of our estimation as
the system executes actions to solve 25 random problems with 5 blocks. Figure 4,
shows how this error evolves when we have 8 blocks with a different behavior
each. And Figure 5 shows how this error evolves when the system executes
actions to solve 25 random problems with 11 blocks. Each block with a different
behavior when it is picked-up or put-down.

In all the experiments the system achieves very low values of mean quadratic
error so the system can achieve a good estimation of the robustness of the actions.
But as the number of blocks is increased, the learning process is much slower.
That is because we increase the number of different instantiated actions so the
system has to learn a greater amount of concepts.

4 Related Work

There are another architectures that integrate planning, executing and learning
to act in domains with incomplete information: In [10] is described an automaton



7

that is able to move in an unknown deterministic environments by learning the
desirability of its actions. This approach uses a very simple planning strategy
to decide future actions, so it is not able to manage a rich representation of
the action model and the goals. [11] describes an architecture that interleaves
high-level task planning with real world robot execution and learns situation-
dependent control rules from selecting goals to allow the planner to predict and
avoid failures. The main difference between their architecture and ours is that
we guide the planner in choosing the instantiations of the actions rather than in
choosing goals.

5 Conclusions and future work

In this paper we have presented an architecture that automatically acquires
knowledge about the uncertainty associated with instantiated actions, assuming
we have no “a priori” knowledge about the special features of the objects that
cause the failure when executing actions.

The experiments show that the system can learn the probabilities of success
of the instantiated actions in the proposed domain.

From a critical point of view, our approach present scaling limitations. As
we try to learn the robustness of every instantiation of the operators, it will not
scale well when the number of objects in the world is too big. So this would
be a problem in really big domains. This problem also happens in other ma-
chine learning techniques such as Q-Learning [12], and in other current planning
algorithms such as GraphPlan [13] or FF [14] that need a whole instantiation
of the domain. Otherwise we are working in capturing the special behaviour of
instances using a state based representation and trying to induce the similar
features of the objects

In this work we have only considered the failure or success of an action execu-
tion, so we have interpreted the robustness as a probability of success. A pending
extension to this work for future efforts is working in domains where actions are
not instantaneous but have duration. Then we can interpret the robustness value
as a duration or (a quality) value that depends on the instantiation of the action.

6 Acknowledgments

This work has been partially supported by the Spanish MCyT under project
TIC2002-04146-C05

References

1. Boutilier, C., Dean, T., Hanks, S.: Planning under uncertainty: structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research
(1998)

2. Blythe, J.: Decision-theoretic planning. AI Magazine, Summer (1999)



8

3. Pasula, H., Zettlemoyer, L., Kaelbling, L.: Learning probabilistic relational plan-
ning rules. Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (2004)

4. Garca-Martnez, R., Borrajo, D.: An integrated approach of learning, planning,
and execution. Journal of Intelligent and Robotic Systems 29 (2000) 47–78

5. Barto, A., Bradtke, S., Singh, S.: Real-time learning and control using asyn-
chronous dynamic programming. Technical Report, Department of Computer Sci-
ence, University of Massachusetts, Amherst (1991) 91–57

6. Jimnez, S., Fernndez, F., Borrajo, D.: Machine learning of plan robustness knowl-
edge about instances. Proceedings of the 16th European Conference on Artificial
Intelligence (2005)

7. Kaelbling, L.P., Littman, M., More, A.: Reinforcement learning: A survey. Journal
of Artificial Intelligence Research (1996)

8. Rodrguez-Moreno, M.D., Borrajo, D., Oddi, A., Cesta, A., Meziat, D.: Ipss: A
problem solver that integrates planning and scheduling. Third Italian Workshop
on Planning and Scheduling (2004)

9. Younes, H.L.S., Littman, M.L.: Ppddl1.0: An extension to pddl for expressing
planning domains with probabilistic effects. Technical Report CMU-CS-04-167,
School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania.
(2004)

10. Doran, J.: Experiments with a pleasure-seeking automaton. Machine Intelligence
3 (1968) 195–216

11. Haigh, K.Z., Veloso, M.M.: Planning, execution and learning in a robotic agent.
AIPS (1998) 120–127

12. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Machine Learning 8
(1992) 279–292

13. Blum, A., Furst, M.: Fast planning through planning graphs analysis. Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI) (1995)
1636–1642

14. Hoffmann, J.: Ff:the fast forward planning system. AI Magazine, 22(3) (2001)
57–62


