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Fig. 1. MBARIs Dorado AUV with its water samplers

I. IN-SITU SAMPLING OF OCEAN FEATURES

The coastal ocean is a rich and dynamic environment
with a multitude of features with interacting biogeochem-
ical phenomenon. Land-sea interactions result in processes
often interacting with one another over unpredictable spatio-
temporal extants. Fig. 2 for example is a representation of three
selected phenomena: fronts, Intermediate Nepheloid Layers
([McPhee-Shaw, 2006]), and blooms, each of which can occur
over a wide range of spatial scales, from thousands of kilome-
ters (fronts and blooms) down to tens/hundreds of meters.In
recent years, robotic platforms such as floats, autonomous
profilers, buoys and autonomous underwater vehicles (AUVs)
have provided a non-intrusive, and a repeatable and verifiable
way of observing the oceans up close, augmenting the data
provided by existing methods cost-effectively. Because of
the need for sustained observing presence, it has become
important to use the platforms to not only measure time-
series data routinely [Chavez et al., 1997] and detection of
thin phytoplankton layers but for event response situations
such as oil-spills and weather events and sampling eddies
[Bower, 2007].

While they’re often cost-effective and can sustain them-
selves for increasing duration, their effectiveness has been
limited because of a lack of adaptivity given the dynamism of
the features in question. To be effective, these platforms need
to be able to sense their features, and be responsive to what
has been sensed and do so in-situ; for example an AUV could
alter its navigation or control goals to change direction or its
control law to yo-yo through a thin layer when the latter is
detected. Or a profiling float while dormant could periodically
sample its environment, and be awake to a passing layer in
a front and rapidly alter its sampling behavior. Such needs
have been prevelant for a while; [Rudnick and Perry, 2003]

Fig. 2. Coastal ocean phenomena targeted for studies using adaptive control
on a robust operational AUV. Along the black surface tracks from a Sept.
’07 mission, the AUV executed a vertical Yo-Yo to map the water column
in high-resolution for key phenomena such as fronts, intermediate nepheloid
layers (INLs), and phytoplankton blooms and patches

for example outlines the need for sampling transient and
rapidly evolving events with autonomous platforms. A primary
problem to meet such needs, has been to deal with in-situ
identification of feature of interest, none of which can be
modeled deterministically.

Our previous work [Fox et al., 2007] addressed in-situ iden-
tification as a standard classification of water-column features.
In such cases, identification relied only on the current sen-
sor reading ignoring the past. We present a novel effort in
generating a systematic identification model based on Hidden
Markov Models (HMMs) for environmental state estima-
tion and doing so in-situ embedded in a robotic platform.
HMMs [Rabiner, 1989] use the dynamics of classes to exploit
sequential information of the sensor readings which provide
us with more robust identification than standard classification.
Our objectives are to use such HMMs and to dynamically learn
ocean features using MBARIs Dorado AUV.

II. LEARNING IDENTIFICATION MODELS

We have designed a general purpose two-step machine
learning process that automatically builds the identification
model of a specific feature of interest. Fig. 3 shows an
overview of this process. The input is a collection of raw
sensor data; the output is the identification model for the
corresponding feature. This model presents the form of a
Hidden Markov Model. Unlike identification models based on
traditional classifiers, HMMs can use the dynamics of classes
to exploit sequential information of the sensor readings which
provide us with more robust identification. The states of the
HMM represent the states of the feature to identify and the
HMM observations represent values of the platforms sensors.
Therefore, the learned HMMs capture the relationship between
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Fig. 3. Two-step proccess for the automated building of identification models

the possible sensor readings and the states of a given feature
of interest, as well as the transitions of the feature states as
the platform transitions thru the feature in the coastal ocean.
As an example, the HMM generated in Fig. 3 is built for
the identification of four different locations of the feature
of interest: Outside the feature, at the Boundary, Inside the
feature or at the Centroid of the feature driven by our studies of
Intermediate Nepheloid Layers (INLs) [McPhee-Shaw, 2006,
Ryan et al., 2010] and their science requirements.

First we perform a semi-supervised clustering in this two-
step machine learning process, that discretizes the raw sensor
data. Second, we include the found clusters as observations
of the HMM and adjusts the parameters of the HMM to
the historical data we have. The most effective algorithms
for learning the probabilities of an HMM (step V of Fig.
3) are based on Expectation Maximization (EM) techniques
that require input data completely labeled [Rabiner, 1989].
However, completely labelling sensor data is usually not vi-
able. An AUV water-column survey of few hours with sensors
sampling at 4 to 5 Hz will generate a substantial volume of
raw sensor data with a corresponding amount of effort in
labelling. Our aim then, is to make our approach viable; in
the process we introduce a preliminary step of automatic label
propagation (step IV of Fig. 3) that allows experts to only
label a small fraction of the data. Label propagation relies on
a set of prototypes (clusters) of the different sensor readings.
This set of clusters is found completing a semi-supervised
generalization (steps II and III in Fig. 3) over sensor readings
partially labelled by a scientific expert (step I in Fig. 3).

III. USAGE OF IDENTIFICATION MODELS

Our approach exploits the resulting HMM for in-situ event
response as follows. The HMM is executed on-board a plat-
form like an AUV, to identify the diverse states of a given
feature of interest as the platform transits through it. This
identification is based on feature state predictions computed
with the built HMM and the observed sensor values. In
particular, we are interested in the probability of being in a
given state sj (for purposes of robotic actuation) at the current
step t, i.e., fwd(1 : t, sj). This probability is computed using
the Markov property, i.e., that the state at the current time
depends only on the state at the previous step.

fwd(1 : t, sj) = αtP (Yt = ok|Xt = sj)∑
i

P (Xt = sj |Xt−1 = si)P (Xt−1 = si)

where alphat is a normalization factor and
∑
Prob(Xt =

si) = 1. The initial state of the HMM is Outside, therefore
Prob(X0 = Outside) = 1 and Prob(X0 = Inside) = 0,
Prob(X0 = Boundary) = 0 and Prob(X0 = Centroid) =
0. When continuous sensor data triggers an HMM state tran-
sition which has been marked as being of interest, the HMM
can track the continuous state till an appropriate threshold can
trigger a response on a robotic platform leading to adaptation
in its control strategy. This is a promising a new approach
to efficient measurement and sample collection with an initial
demonstration for capturing water samples within INLs in the
Monterey Bay.

Our at sea experiments this Fall, are based on the continum
of work with oceanographers using AUVs outfitted with the
Gulper water sampling instrument [McGann et al., 2008a].
We have designed, built, tested and deployed and onboard
hybrid planning and execution system called TREX
(the Teleo-Reactive Executive) [McGann et al., 2008b,
McGann et al., 2008a, McGann et al., 2009, Py et al., 2010]
which is built around the paradigm of sense-plan-act.
While previous versions of the HMM have been manually
generated using statistical clustering methods such as Self
Organizing Maps (SOM) and labelled, our current approach
will synthesize more complex HMMs as a way to finely tune
when and where water samples should be taken in dynamic
environments such as Monterey Bay.
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