
ROLLER: A Lookahead Planner Guided by Relational Decision Trees

Tomás de la Rosa and Sergio Jiménez
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
trosa@inf.uc3m.es, sjimenez@inf.uc3m.es

Abstract

In this paper we describe the version of the planner ROLLER
submitted to the learning track of the International Planning
Competition. This version, learns domain dependent general
policies with the aim of improving a lookahead strategy for
forward search planning. ROLLER performs the policy learn-
ing in a two-step classification process with the relational
classifier TILDE. At the first step the classifier captures the
preferred operator to be applied in the different planning con-
texts. At the second step the classifier captures the preferred
bindings for each operator in the different planning contexts.
In this version of ROLLER a planning context is specified by
the helpful actions of the current state, the problem goals, the
static predicates of the problem and the last action applied.

Introduction
ROLLER is a learning-based planner for solving STRIPS
planning problems defined in the typed PDDL language.
Specifically, ROLLER starts with a set of training problems
from a given domain, learns a domain dependent policy
solving these problems and finally, uses the policy for order-
ing the actions of the relaxed plans in a lookahead planning
strategy (Vidal 2004).

As shown in IPC-20041, the relaxed plans built for eval-
uating nodes in heuristic planners can be extended to solu-
tion plans. Lookahead planners take advantage of this fact
to outperform the scalability of standard heuristic planners.
However, the extension of a relaxed plan to a solution plan
is not direct in all planning domains. Since relaxed plans
are built ignoring the actions deletes, they may lack of some
essential actions or they may need an action reordering to be
useful. Particularly, these effects happens in domains with
a strong subgoal interaction, e.g the blocksworld. With the
aim of relieving these undesired effects, ROLLER reorders
the actions of the computed relaxed plans according to do-
main dependent knowledge captured in the form of a general
policy.

The paper is organized as follows. The first section de-
scribes the basic notions of heuristic planning and the defi-
nition of planning context used by this version of ROLLER.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://ipc04.icaps-conference.org/

The second section explains the concept of relational deci-
sion trees and how to learn general policies with them. The
third section shows how to assist a lookahead planner with
a domain dependent general policy. Finally the last section
discusses some conclusions.

Helpful Context in Heuristic Planning
We follow the propositional STRIPS formalism to describe
our approach. We define a planning task P as the tuple
(L, A, I,G) with L the set of literals of the task, A the set of
actions, where each action a = (pre(a), add(a), del(a)). I
is the set of literals describing the initial state and G the set
of literals describing the goals. Under this definition, solv-
ing a planning task implies finding a plan P as the sequence
(a1, . . . , an) that transforms the initial state into a state in
which the goals have been achieved.

FF (Hoffmann & Nebel 2001) heuristic returns the num-
ber of actions in the relaxed plan denoted by P+, which is
a solution of the relaxed planning task P+; a simplification
of the original task in which the deletes of actions are ig-
nored. The relaxed plan is extracted from the relaxed plan-
ning graph, which is built as a sequence of fact and action
layers. This sequence, represented by (F0, A0, . . . , At, Ft),
describes a reachability graph of the applicable actions in
the relaxed task. For each search state the length of the re-
laxed plan extracted from this graph is used as the heuristic
estimation of the corresponding state.

Moreover, the relaxed plan extraction algorithm marks a
set of facts Gi in the planning graph, for each fact layer Fi,
as a set of literals that are goals of the relaxed planning task
or are preconditions of some actions in a subsequent layer in
the graph. According to this, the set of helpful actions are
defined as:

helpful(s) = {a ∈ A | add(a) ∩G1 6= ∅}
Traditionally, the helpful actions are used in the search

as a pruning technique, because they are considered as the
only candidates for being selected during the search. In this
work we use helpful actions with a different purpose. Given
that each state generates its own particular set of helpful ac-
tions, we argue that the helpful actions, together with the re-
maining goals, the static literals of the planning task and the
last applied action, encode a useful context related to each

state. The aim of defining a helpful context is to determine in
later planning episodes, which action from the relaxed plan
should be applied. Formally, we define the helpful context,
H(s), of a state s as:

H(s) = {helpful(s), target(s), static(s), last(s)}
where target(s) ⊆ G describes the set of goals not

achieved in state s (target(s) = G − s), static(s) =
static(I) is the set of literals that remain true during the
search, because they are not changed by any action in the
problem and last(s) ∈ A represents the action applied for
reaching the state s.

Learning General Policies with Decision Trees
ROLLER follows a three-step process for learning the general
policies building relational decision trees:

1. Generation of learning examples. ROLLER solves a set of
training problems and records the decisions made by the
planner when solving them.

2. Actions Classification. ROLLER obtains a classification
of the best operator to choose in the different helpful con-
texts of the search according to the learning examples.

3. Bindings Classification. For each schematic operator in
the domain, ROLLER obtains a classification of the best
bindings (instantiated arguments) to choose in the differ-
ent helpful contexts of the search according to the learning
examples.
The process for the generation of the learning examples is

shared by both classification steps. The learning is separated
into two classification steps in order to build general poli-
cies with off-the-shelf classifiers. The fact that each plan-
ning action may have different arguments (in terms of ar-
guments type and arguments number) makes unfeasible, for
many classifiers, the definition of only one learning target
concept. Besides, we believe that this two-step decision pro-
cess is also clearer from the decision-making point of view,
and helps users to understand the generated policy better by
focusing on either the decision on which action to apply, or
which bindings to use given a selected action.

Generation of Learning Examples
With the aim of providing the classifier with learning ex-
amples corresponding to good quality planning decisions,
ROLLER solves the training problems first using the En-
forced Hill Climbing algorithm (EHC) (Hoffmann & Nebel
2001), and then, refining the found solution with a Depth-
first Branch-and-Bound algorithm (DFBnB). DFBnB in-
creasingly generates better solutions according to a given
metric, the plan length in this ROLLER version and a time
bound of 60 seconds. The final search tree is traversed and
all nodes belonging to one of the solutions with the best cost
are tagged for generating learning instances for the classi-
fier. Specifically, for each tagged node, ROLLER generates
learning examples consisting of:
• the helpful context of the node, i.e., the helpful actions

extracted from the node siblings plus the set of remaining

goals, the static predicates of the planning problem and
the action applied to reach the current state.

• the class of the node. For the Actions Classification this
class indicates the operator of the node applied action.
In the Bindings Classification the node siblings with the
same operator than the tagged node are also added as
learning examples. In the case, the class indicates whether
the node is part (selected class) or not (rejected class) of
one of the best cost solutions.
Because DFBnB is an exhaustive search algorithm, solv-

ing the training problems of large size can take too much
time. With the aim of keeping acceptable learning times,
ROLLER rejects the training problems that EHC cannot solve
in a given time-bound. Besides, ROLLER ensures a set of
small learning examples generating extra training problems
by splitting the original ones into problems with less goals.
Particularly, the number of goals for the extra problems is
computed according to this formula.

num new goals = (split k ∗ |G|)/hFF(I) (1)
where split k is an input parameter of ROLLER that repre-
sent a plan length estimation for solving a problem of one
goal. Once ROLLER has solved the training problems it
performs an incremental learning from the smallest train-
ing problem to the biggest one. The size of a problem is
estimated as the length of the plan found by EHC. At each
learning step roller takes a given number of training prob-
lems, generates the corresponding learning examples and
use them to build the general policy. The newly generated
policy is compared with the best one generated so far, and if
the new policy is better it is considered as the best one for
the next learning step. For the comparison between policies,
ROLLER uses a set of test problems T and the quality metric
defined in the learning track of the competition. According
to this metric:

1. Given a test problem t ∈ T , let N* be the minimum num-
ber of actions for solving t with any of the two policies.

2. The policy that produce a solution with N actions will get
a score of N*/N for the problem. If the policy does not
solve the problem get a score of 0.

3. The final policy score is simply the sum of scores received
over all the test problems t ∈ T .

The Classification Algorithm
A classical approach to assist decision making consists of
gathering a significant set of previous decisions and build-
ing a decision tree that generalizes them. The leaves of the
resulting tree contain the decision to make and the internal
nodes contain the conditions over the examples features that
lead to those decisions. The common way to build these
trees is following the Top-Down Induction of Decision Trees
(TDIDT) algorithm (Quinlan 1986). This algorithm builds
the decision tree repeatedly splitting the set of learning ex-
amples by the conditions that maximize the examples en-
tropy. Traditionally, the learning examples are described in
an attribute-value representation. Therefore, the conditions
of the decision trees represent tests over the value of a given

attribute of the examples. On the contrary, decisions in AI
planning are described relationally: a given action is cho-
sen to reach some goals in a given context all described in
predicate logic.

Recently, new algorithms for building relational decision
trees from examples described as logic facts have been de-
veloped. This new relational learning algorithms are sim-
ilar to the propositional ones except that the conditions in
the tree consist of logic queries about relational facts hold-
ing in the learning examples. Since the space of potential
relational decision trees is normally huge, these relational
learning algorithms are biased according to a specification
of syntactic restrictions called language bias. This specifica-
tion contains the predicates that can appear on the examples,
the target concept, and some learning-specific knowledge as
type information, or input and output variables of predicates.
In our approach all this language bias is automatically ex-
tracted from the PDDL definition of the planning domain.

Along this work we used the tool TILDE (Blockeel & De
Raedt 1998) for both the action and bindings classification.
This tool implements a relational version of the TDIDT al-
gorithm.

Learning the Actions Tree
The inputs to the actions classification are:

• The language bias, that specifies restrictions in the values
of arguments of the learning examples. In our case, this
bias is automatically extracted from the PDDL domain
definition and consists of the predicates for representing
the target concept, i.e., the action to select, and the back-
ground knowledge, i.e., the helpful context.

• The learning examples. They are described by the set
of examples of the target concept, and the background
knowledge associated to these examples. As previ-
ously explained, the background knowledge describes the
helpful-context of the action selection.

The resulting relational decision tree represents a set of
disjoint patterns of action selection that can be used to pro-
vide advice to the planner: the internal nodes of the tree
contain the set of conditions under which the decision can
be made. The leaf nodes contain the corresponding class;
in this case, the decision to be made and the number of ex-
amples covered by the pattern. Figure 1 shows the actions
tree learned for the satellite domain. Regarding this tree, the
first branch states that when there is a calibrate action
in the set of helpful/candidate actions, it was correctly se-
lected in 44 over 44 times, independently of the rest of help-
ful/candidate actions. The second branch says that if there is
no calibrate candidate but there is a take image one,
the planner has finally chosen correctly to take image in
110 over 110 times and so on for all the four branches.

Learning the Bindings Tree
At this step, a relational decision tree is built for each ac-
tion in the planning domain. These trees, called bindings
trees, indicate the bindings to select for the action in the dif-
ferent planning contexts. The language bias for learning a

selected(-A,-B,-C)
candidate_calibrate(A,B,-D,-E,-F) ?
+--yes:[calibrate] 44.0 [[turn_to:0.0,switch_on:0.0,
| switch_off:0.0,calibrate:44.0,
| take_image:0.0]]
+--no: candidate_take_image(A,B,-G,-H,-I,-J) ?

+--yes:[take_image] 110.0 [[turn_to:0.0,switch_on:0.0,
| switch_off:0.0,calibrate:0.0,
| take_image:110.0]]
+--no: candidate_switch_on(A,B,-K,-L) ?

+--yes:[switch_on] 59.0 [[turn_to:15.0,switch_on:44.0,
| switch_off:0.0,calibrate:0.0,
| take_image:0.0]]
+--no: [turn_to] 149.0 [[turn_to:149.0,switch_on:0.0,

switch_off:0.0,calibrate:0.0,
take_image:0.0]]

Figure 1: Relational decision tree learned for the action se-
lection in the satellite domain.

bindings tree is also automatically extracted from the PDDL
domain definition. But in this case, the target concept rep-
resents the action of the planning domain and its arguments,
plus an extra argument indicating whether the set of bindings
was selected or rejected by the planner in a given context;

The learning examples for learning a bindings tree con-
sist of examples of the target concept, and their associated
background knowledge.

Figure 2 shows a bindings tree built for the action
turn-to from the satellite domain. According to this tree,
the first branch says that when there is a sibling node that
is a turn-to of a satellite C from a location E to a loca-
tion D with the goal of goal pointing D, another goal
is having an image of E and we have to calibrate C in E,
the turn-to has been selected by the planner in 12 over
12 times.

turn_to(-A,-B,-C,-D,-E,-F)
candidate_turn_to(A,B,C,D,E),target_goal_pointing(A,B,C,D)?
+-yes:target_goal_have_image(A,B,E,-G)?
| +--yes: static_fact_calibration_target(B,-H,D)?
| | +--yes:[selected] 12.0 [[selected:12.0,rejected:0.0]]
| | +--no: [rejected] 8.0 [[selected:0.0,rejected:8.0]]
| +--no: [rejected] 40.0 [[selected:0.0,rejected:40.0]]
+-no: candidate_turn_to(A,B,C,D,E),target_goal_have_image(A,B,E,-I)?

+--yes: target_goal_have_image(A,B,D,-J) ?
| +--yes:[rejected] 48.0 [[selected:0.0,rejected:48.0]]
| +--no: [selected] 18.0 [[selected:18.0,rejected:0.0]]
+--no: [selected] 222.0 [[selected:220.0,rejected:2.0]]

Figure 2: Relational decision tree learned for the bindings
selection of the turn to action from the satellite domain.

Lookahead Planning with General Policies
The relaxed plan of given state may contain many actions of
the solution plan, so one can use this relaxed plan to generate
a new state, called lookahead state, built with the subsequent
application of the actions in the relaxed plan until no more
actions are applicable. This lookahead state is often closer
to goal and it can be used in the search as new descendent of
the current state. Figure 3 shows the algorithm implemented
for using lookahead states during the search: For each state
s to be expanded, ROLLER computes its helpful actions and
its lookahead state. The helpful actions are placed at the end
of the open list, but the lookahead state is placed at the be-
ginning, assuming that this node should be expanded before
trying any other in the open list.

Lookahead BFS Policy (I,G, T): plan

I: initial state
G: goals
T : (Policy) Decision Trees

open-list = {I}
while open-list 6= ∅ and not solved(s, G) do

s = pop-first-node(open-list)
RP = compute-relaxed-plan(s)
H ′ = helpful-successors(RP, s)
L′ = get-lookahead-successors(RP, s, T)
open-list = concatenate(L′,open-list,H ′)

Figure 3: A Lookahead BFS algorithm.

ROLLER computes the lookahead state of the current state
by iteratively selecting the best action to apply from the re-
laxed plan following the general policy learned. Specifi-
cally, our algorithm for the generation of the lookahead state
is defined in Figure 4. The function applicable com-
putes the applicable actions of the relaxed plan using the
current lookahead state. Functions solve-op-tree and
solve-binding-tree match the context of the looka-
head state with the action tree and the bindings tree respec-
tively. The function instances-of-operator select a
subset of the applicable actions for just considering the ac-
tions of the selected operator in by the action tree.

get-lookahead-successor (RP, s, T): ls

RP : relaxed-plan
s: current node
T : (Policy) Decision Trees
ls: lookahead successor

ls = s
while (A = applicable(ls, RP)) 6= ∅ do

action = solve-op-tree(ls, T)
C = instances-of-operator(A, action)
for each c in C do

ratio(c) = solve-binding-tree(c, ls, T)
c′ = argmax(ratio(c)), c ∈ C
ls = apply(c′, ls)
RP = RP − {c′}

return ls

Figure 4: Algorithm for extracting the lookahead node sort-
ing the Relaxed plan with the learned helpful-context policy.

Roller Parameters
The roller planning system is split in two modules: the
learner and the planner. The learner receives a set of training
problems, generates the extra problems and learns a general
policy in form of relational decision trees. The learner is
parametrised by:
• timeout indicates the time-bound for the DFBnB algo-

rithm
• prob-per-iteration the number of training problems for

each step of the incremental learning
• The split constant for deciding the size of the extra train-

ing problems
The planner receives a domain file, a problem file, the

directory with all the trees corresponding to the domain de-
pendent policy learned for this domain and a time-bound.
The output of ROLLER is a total-order plan if its able to find
a solution plan before a specified time-bound.

Discussion
The benefits of the learning assistance in the ROLLER sys-
tem are more evident in domains where the current looka-
head strategies for heuristic planners do not perform well
because there is a strong interaction between the goals. In
this kind of domains our approach will improve the quality
of the plans found and avoid node evaluation boosting the
scalability. However this approach is still weak for domains
where the relaxed plan actions are misleading like the driver-
log. Further research have to be done in this kind domains.

The version of ROLLER submitted to the first learning
track of the International Planning Competition implements
a different definition of the helpful context from the one
originally explained in (de la Rosa, Jiménez, & Borrajo
2008). Specifically this definition also includes the last exe-
cuted action to reduce the ambiguity of similar contexts.

Acknowledgments
This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M project
CCG06-UC3M/TIC-0831.

References
Blockeel, H., and De Raedt, L. 1998. Top-down induction of first-
order logical decision trees. Artificial Intelligence 101(1-2):285–
297.
de la Rosa, T.; Jiménez, S.; and Borrajo, D. 2008. Learning re-
lational decision trees for guiding heuristic planning. In Proceed-
ings of the Eighteenth International Conference on Automated
Planning and Scheduling (ICAPS 08).
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. JAIR 14:253–302.
Quinlan, J. 1986. Induction of decision trees. Machine Learning
1:81–106.
Vidal, V. 2004. A lookahead strategy for heuristic search plan-
ning. In Proceedings of the Fourteenth International Conference
on Automated Planning and Scheduling (ICAPS 2004), June 3-7
2004, Whistler, British Columbia, Canada, 150–160.

